首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yield reduction of pea (Pisum sativum) due to various types of infections by Mycosphaerella pinodes on pods was assessed. A range of disease severities was created on pods of pea plants grown in the glasshouse, by painting the pods with different concentrations of spore suspensions, at three different pod development stages: lag phase, the beginning of seed filling (BSF) and mid-filling of the seeds. Seed number at harvest was reduced only if the pods were infected before BSF, as shown previously for whole plant infections. Pod infections led to individual seed weight (ISW) losses from zero (for late infections, at mid-filling) to 20% (for earlier infections and severe disease). Infection during the lag phase affected ISW by reducing seed growth rate, whereas infection at BSF tended to reduce the duration of seed filling. There was a linear relationship between the area under the disease progress curve and the percentage decrease in ISW. This model should be complemented by the effect of leaves and stem infections, in order to predict ISW losses in diseased crop conditions, in which epidemics occur on all aerial parts of the pea plant.  相似文献   

2.
We previously reported on the in vitro antifungal activity of a crude whole plant extract from Eucomis autumnalis against seven economically important plant pathogenic fungi. A crude extract of the bulb showed similar in vitro mycelial growth inhibition of the same plant pathogenic fungi as well as that of an eighth fungus, Mycosphaerella pinodes, the cause of black spot or Ascochyta blight, in peas. Subsequently, fourth internode leaves were removed from 4 wk old pea plants, placed on moist filter paper in Petri dishes and inoculated with an M. pinodes spore suspension before and after treatment with the extract. The control of Ascochyta blight by different concentrations of the crude E. autumnalis extract was followed in vivo by leaf symptoms over a 6 day period at 20°C in a growth cabinet. The crude extract prevented M. pinodes spore infection of the leaves when the leaves were inoculated with spores both before or after treatment with the extract, confirming complete inhibition of spore germination. The crude E. autumnalis extract showed no phytotoxic reaction on the leaves even at the highest concentration applied.  相似文献   

3.
D. A. Morris  A. Guy Thomas 《Planta》1974,118(3):225-234
Summary When eight 14C-labelled auxin and non-auxin compounds were applied to the apical buds of intact dwarf pea seedlings (Pisum sativum L.), only [1-14C]indoleacetic acid ([14C]IAA) and -[1-14C] naphthaleneacetic acid ([14C]NAA) underwent appreciable basipetal transport during the first 24 h; over a longer period (72 h) considerable basipetal transport of the auxin [1-14C]2,4-dichlorophenoxyacetic acid ([14C]2,4-D) also occurred, but at a very much lower velocity (ca. 1.4–2.2 mm·h-1). The movement of 2,4-D possessed many of the characteristics of a typical auxin transport. During uptake and transport IAA and NAA were extensively metabolised to the corresponding aspartates, and to ethanol-insoluble/NaOH-soluble compounds; little metabolism of 2,4-D was observed. None of the non-auxin compounds applied (sorbose, sucrose, leucine, adenine and kinetin) underwent appreciable basipetal transport from the apical bud. All but sorbose were extensively metabolised by the apical tissues. Little metabolism of sorbose itself was detected.The results suggest that the long-distance basipetal auxin transport system from the apical bud of intact plants is specific for auxins; the specificity may result from the affinity of auxins for specific transport sites.  相似文献   

4.
We report on the distribution and initial characterization of glucose/mannose-specific isolectins of 4- and 7-d-old pea (Pisum sativum L.) seedlings grown with or without nitrate supply. Particular attention was payed to root lectin, which probably functions as a determinant of host-plant specificity during the infection of pea roots by Rhizobium leguminosarum bv. viciae. A pair of seedling cotyledons yielded 545±49 g of affinity-purified lectin, approx. 25% more lectin than did dry seeds. Shoots and roots of 4-d-old seedlings contained 100-fold less lectin than cotyledons, whereas only traces of lectin could be found in shoots and roots from 7-d-old seedlings. Polypeptides with a subunit structure similar to the precursor of the pea seed lectin could be demonstrated in cotyledons, shoots and roots. Chromatofocusing and isoelectric focusing showed that seed and non-seed isolectin differ in composition. An isolectin with an isoelectric point at pH 7.2 appeared to be a typical pea seed isolectin, whereas an isolectin focusing at pH 6.1 was the major non-seed lectin. The latter isolectin was also found in root cell-wall extracts, detached root hairs and root-surface washings. All non-seed isolectins were cross-reactive with rabbit antiserum raised against the seed isolectin with an isolectric point at pH 6.1. A protein similar to this acidic glucose/mannose-specific seed isolectin possibly represents the major lectin to be encountered by Rhizobium leguminosarum bv. viciae in the pea rhizosphere and at the root surface. Growth of pea seedlings in a nitrate-rich medium neither affected the distribution of isolectins nor their hemagglutination activity; however, the yield of affinity-purified root lectin was significantly reduced whereas shoot lectin yield slightly increased. Agglutination-inhibition tests demonstrated an overall similar sugar-binding specificity for pea seed and non-seed lectin. However root lectin from seedlings grown with or without nitrate supplement, and shoot lectin from nitrate-supplied seedlings showed a slightly different spectrum of sugar binding. The absorption spectra obtained by circular dichroism of seed and root lectin in the presence of a hapten also differed. These data indicate that nutritional conditions may affect the sugar-binding activity of non-seed isolectin, and that despite their similarities, seed and non-seed isolectins have different properties that may reflect tissue-specialization.Abbreviations IEF isoelectric focusing - MW molecular weight - pI isoelectric point - Psl1, Psl2 and Psl3 pea isolectins - SDSPAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis The authors wish to thank Professors L. Kanarek and M. van Poucke for helpful discussions.  相似文献   

5.
D. A. Morris 《Planta》1977,136(1):91-96
Dwarf pea plants bearing two cotyledonary shoots were obtained by removing the epicotyl shortly after germination, and the patterns of distribution of 14C in these plants was investigated following the application of [14C]IAA to the apex of one shoot. Basipetal transport to the root system occurred, but in none of the experiments was 14C ever detected in the unlabelled shoot even after transport periods of up to 48 h. This was true both of plants with two equal growing shoots and of plants in which one shoot had become correlatively inhibited by the other, and in the latter case applied whether the dominant or subordinate shoot was labelled. In contrast, when [14C]IAA was applied to a mature foliage leaf of one shoot transfer of 14C to the other shoot took place, although the amount transported was always low. Transport of 14C from the apex of a subordinate shoot on plants bearing one growing and one inhibited shoot was severely restricted compared with the transport from the dominant shoot apex, and in some individual plants no transport at all was detected. Removal of the dominant shoot apex rapidly restored the capacity of the subordinate shoot to transport apically-applied [14C]IAA, and at the same time led to rapid cambial development and secondary vascular differentiation in the previously inhibited shoot. Applications of 1% unlabelled IAA in lanolin to the decapitated dominant shoot maintained the inhibition of cambial development in the subordinate shoot and its reduced capacity for auxin transport. These results are discussed in relation to the polarity of auxin transport in intact plants and the mechanism of correlative inhibition.Abbreviations IAA Indol-3-yl-acetic acid - TIBA 2,3,5-triiodobenzoic acid - 2,4D 2,4-dichlorophenoxyacetic acid - IAAsp Indol-3-yl-acetyl aspartic acid  相似文献   

6.
Epicotyl and primary leaves of pea seedlings (Pisum sativum L., var. Alaska) were found to contain soluble and microsomal enzymes catalyzing the addition of glutathione to the olefinic double bond of cinnamic acid. Glutathione S-cinnamoyl transfer was also obtained with enzyme preparations from potato slices and cell suspension cultures of parsley and soybean.The pea transferases had pH-optima between pH 7.4 and 7.8 Km-values were 0.1–0.4 mM and 1–4 mM for cinnamic acid and glutathione, respectively. V-values were between 2–15 nmol mg-1 protein x min.Chromatography on Sephacryl S-200 indicated that the soluble pea glutathione S-cinnamoyl transferase activity existed in molecular weight forms of 37,000, 75,000, and 150,000. The glutathione-dependent cleavage of the herbicide fluorodifen was catalyzed by a different soluble enzyme activity which eluted in molecular weight positions of 47,000 and/or 82,000.The microsomal fraction from pea primary leaves also catalyzed the conjugation of the carcinogen benzo[]pyrene with glutathione.Abbreviations GSH glutathione - DDE 1,1-Dichloro-2,2-bis-(4-chlorophenyl)-ethylene - DDMU l-Chloro-2,2-bis-(4-chlorophenyl)-ethylene  相似文献   

7.
Sulphate uptake and xylem loading of young pea (Pisum sativum L.) seedlings   总被引:3,自引:0,他引:3  
Herschbach  C.  Pilch  B.  Tausz  M.  Rennenberg  H.  Grill  D. 《Plant and Soil》2002,238(2):227-233
Sulphate uptake and xylem loading was analysed in young pea (Pisum sativum) seedlings. The rate of sulphate uptake into intact 8-days-old pea seedlings (determined by a 1 h exposure to radiolabelled sulphate in the nutrient solution) was 585 nmol sulphate g–1 root fresh weight h–1. When the cotyledons were removed on day 6 the 8-days-old seedlings took up only 7% of the controls. Interruption of the phloem transport by steam girdling of the stem or the root (1 h before incubation with radiolabelled sulphate) diminished sulphate uptake by approximately 50%. The addition of sucrose to the nutrient solution during incubation did not restore sulphate uptake rates indicating that the decrease was not due to a lack of energy. Apparently, a signal from the shoot and/or the cotyledons is necessary to stimulate sulphate uptake into the roots of pea seedlings. Glutathione fed to the roots for 3 h prior to incubation with radiolabelled sulphate diminished sulphate uptake by approximately 50%. The relative proportion of the sulphate taken up that was loaded into the xylem remained unchanged (between 7 and 9% of total uptake), even when the stem was girdled above the cotyledons or when the seedlings were pre-exposed to glutathione. Only removal of the cotyledons or girdling of the root below the cotyledons increased the proportion of sulphate loaded into the xylem to 13–15% of total uptake upon exposure to glutathione. Apparently, a signal from the cotyledons represses xylem loading to some extent.  相似文献   

8.
9.
The effects of ascochyta blight due to Mycosphaerella pinodes on biomass production, seed number and seed weight according to physiological stage and disease intensity were examined. Pea plants were grown in a glasshouse and inoculated with various concentrations of conidia before flowering, at flowering of the second fructifer node (FLO2), at the start of seed filling of the first fructifer node (FSSA1) or the second fructifer node (FSSA2). Uninoculated plants were used as controls. Whatever the stage of inoculation (FLO2 or FSSA2), the disease reduced plant growth and the decrease depended on disease intensity on foliar organs. The seed number was reduced for plants inoculated before flowering, at FLO2 and at FSSA1 and the reduction was linked to disease intensity on foliar organs. At each node, seed number was reduced if the disease occurred before FSSA of the node. The mean seed weight per plant was decreased in plants inoculated at FSSA1 and FSSA2 and the higher the disease intensity on aerials organs, the greater was the reduction of the seed weight. For individual nodes, only inoculations after the beginning of seed filling had a negative effect on mean seed weight at harvest. We found that the decrease of seed number induced by the disease was proportional to aerial biomass production before the end of the period of seed production.  相似文献   

10.
N. Harris  N. J. Chaffey 《Planta》1985,165(2):191-196
Plasmatubules are tubular evaginations of the plasmalemma. They have previously been found at sites where high solute flux between apoplast and symplast occurs for a short period and where wall proliferations of the transfer cell type have not been developed (Harris et al. 1982, Planta 156, 461–465). In this paper we describe the distribution of plasmatubules in transfer cells of the leaf minor veins of Pisum sativum L. Transfer cells are found in these veins associated both with phloem sieve elements and with xylem vessels. Plasmatubules were found, in both types of transfer cell and it is suggested that the specific distribution of the plasmatubules may reflect further membrane amplification within the transfer cell for uptake of solute from apoplast into symplast.  相似文献   

11.
Possible mechanisms behind the light-induced wilting of dark-germinated pea (Pisum sativum L.) epicotyls were studied. Illumination with photosynthetically active radiation caused a fast turgor loss and wilting in the middle segments of the epicotyls accompanied by accumulation of water in the intercellular cavities. During this process, room temperature fluorescence emission spectra showed gradual bleaching of porphyrin-type pigments, which was lessened by incubating the epicotyls with excess ascorbate before illumination. Detection of singlet oxygen and lipid peroxidation products in the illuminated epicotyls suggested the occurrence of porphyrin-photosenzitized membrane damage as a cause of disordered water status and sequential wilting.  相似文献   

12.
The lectin from the garden pea (Pisum sativum L.) has been localized at the ultrastructural level by the unlabeled peroxidase-antiperoxidase procedure of L.A. Sternberger et al. (1970, J. Histochem. Cytochem 18, 315–333) in 24 h imbibed seeds. Upon examination by light microscopy and transmission electron microscopy, the lectin was only found in the protein bodies of cotyledons and embryo axis. Cell walls as well as membraneous fractions were completely devoid of lectin. These results are discussed in relation to the possible physiological function of seed lectins.Abbreviations PBS phosphate-buffered saline - TBS Tris-buffered saline - PAP-complex horseradish peroxidase-antihorseradish peroxidase soluble complex - NGS normal goat serum - TBS* Tris-buffered saline containing 0.5 M NaCl, pH 7.6  相似文献   

13.
Summary The application of 2,3,5-triiodobenzoic acid (TIBA, 10 mg·g-1 in lanolin) to the stem of intact pea seedlings (Pisum sativum L.) inhibited the basipetal transport of 14C from indoleacetic acid-1-14C (IAA-1-14C) applied to the apical bud, but not the transport of 14C in the phloem following the application of IAA-1-14C or sucrose-14C to mature foliage leaves. It was concluded that fundamentally different mechanisms of auxin transport operate in these two pathways.When TIBA was applied at the same time as, or 3.0 h after, the application of IAA-1-14C to the apical bud, 14C accumulated in the TIBA-treated and higher internodes; when TIBA was applied 24.0 h before the IAA-1-14C, transport in the stem above the TIBA-treated internode was considerably reduced. TIBA treatments did not consistently influence the total recovery of 14C, or the conversion of free IAA to indoleaspartic acid (IAAsp). These results are discussed in relation to the possible mechanism by which TIBA inhibits auxin transport,.Attention is drawn to the need for more detailed studies of the role of the phloem in the transport of endogenous auxin in the intact plant.Abbreviations TIBA 2,3,5-triiodobenzoic acid - IAAsp indoleaspartic acid  相似文献   

14.
Summary Three isoenzyme systems (amylase, esterase and glutamate oxaloacetate transaminase) were examined in seeds of pea (Pisum sativum L.) and shown to give clear variation in their band patterns on gel electrophoresis between different lines. The inheritance of these isoenzyme systems, and the location of their genes on the pea genome was investigated. Reciprocal crosses were made between lines, F2 seeds were analysed for segregation in the band patterns of the isoenzymes, and F2 plants were investigated to find linkage between the genes for these isoenzymes and genes for selected morphological markers. The results obtained showed that each of the investigated isoenzyme systems is genetically controlled by co-dominant alleles at a single locus. The gene for amylase was found to be on chromosome 2, linked to the loci k and wb (wb ... 9 ... k ... 25 ... Amy). The gene for esterase was found to be linked with the gene Br (chromosome 4) but the exact location is uncertain because of the lack of the morphological markers involved in the cross. The gene for glutamate oxaloacetate transaminase was found to be on chromosome 1 and linked with the loci a and d (a... 24... Got... 41 ... d).  相似文献   

15.
Summary The aim of this study was to determine whether DNA variations could be detected in regenerated pea plants. Two different genotypes were analyzed by cytogenetic and molecular techniques: the Dolce Provenza cultivar and the 5075 experimental line. Dolce Provenza regenerated plants showed a reduction in DNA content, particularly at the level of unique sequences and ribosomal genes. Moreover, regeneration was associated with an increase in DNA methylation of both internal and external cytosines of the CCG sequence. On the other hand, the DNA content of the 5075 line remained stable after regeneration. DNA reduction was found only in 5075 plants regenerated from callus cultures maintained for long incubation periods (about a year). The DNA variations observed are discussed both in relation to the genotype source and the role of tissue-culture stress.  相似文献   

16.
17.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH glyceraldehyde 3-phosphate dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate: fructose 6-phosphate 1-phosphotransferase Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council  相似文献   

18.
Green manure crops of sweet corn, soybean, alfalfa, snap bean, rape, pea and of the two oat cultivars Dane and Troy were incorporated into the same soil and containers in which the crop had grown for five weeks. The soil was then evaluated for suppression of common root rot (Aphanomyces euteiches) of pea grown in infested pasteurized and non-pasteurized soils in the greenhouse. Pea biomass reduction and a plant bioassay for A. euteiches were used to measure the green manure suppression of disease. Green manures of sweet corn cv.Jubilee, oat cv.Troy, and rape cv.Humus significantly reduced pea biomass losses over the non-amended control soil treatments. Oat cv.Troyand sweet corn cv.Jubilee green manures significantly reduced inoculum density of A. euteiches over the corresponding fallow controls in inoculated pasteurized soil by 87% and 76%, respectively, and in inoculated non-pasteurized soil by 67% and 66%, respectively. Only the green manure of oat cv. Troy reduced inoculum density significantly below fallow.  相似文献   

19.
Abstract Two pea cultivars (Pisum sativum L., cvs. Alaska and Progress No. 9) shown previously to differ with regard to the appearance of the cyanide-resistant (alternative) pathway of respiration in axis tissue, were found to show this same difference in mature leaf tissue and in epicotyl mitochondria. The possible relationship between dwarf growth form and lack of alternative respiration in cv. Progress No. 9 was tested in two ways. When dwarfism was alleviated in Progress No. 9 by application of exogenous gibberellin A1, no appearance of the alternative pathway was observed. In a survey of eight other dwarf pea cultivars, five were found to have an alternative pathway comparable to that shown by the tall cv. Alaska, while three lacked the pathway (cf. Progress No. 9). In reciprocal crosses between Alaska and Progress No. 9, the alternative pathway capacity of F1 progeny resembled that of the maternal parent. This pattern was maintained in all the F2 generation, indicating maternal inheritance of the trait. These data suggest that alternative respiration in pea is, to some extent, under the control of an organellar genome.  相似文献   

20.
Exposure of plants to heavy metals severely affects their growth and physiological processes. Nevertheless, different plants show variable responses to different heavy metals, generally in a concentration-dependent manner. In this study, phytotoxic effects of cadmium (Cd), cobalt (Co) and lead (Pb) applied as chlorides at concentration 500, 750, 1000 and 1250 ppm were evaluated on seed germination, early seedling growth and dry biomass of pea (Pisum sativum L.). A lower concentration (500 ppm) of Pb promoted seed germination but declined other growth parameters. Higher concentration had a phytotoxic influence on the pea. Cd and Co severely affected germination and seedling growth of pea resulting in complete failure of germination and seedling growth at higher metal concentration. Tolerance index (TI) calculated for seed germination and dry biomass indicated that tested plant had zero tolerance to 1250 ppm of Cd as well as 750 ppm and higher concentrations of Co. The order of heavy metals for their phytotoxic effects was Co > Cd > Pb. The study suggests that P. sativum is relatively tolerant to Pb but highly sensitive to Co and Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号