首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the invasion to food commodities by insects and harmful effect of chemical pesticides, essential oils are among the best known substances tested against stored product pests. These compounds may act as fumigants, contact insecticides, repellents or anti-feedants. In present study, fumigant toxicity of essential oils from Laurus nobilis L. and Myrtus communis L. was assessed on larvae and adults of Tribolium castaneum Herbst at 27?±?2?°C, 60?±?5% RH in darkness. Each essential oil was tested in five concentrations with three replicates. The LC50 values of L. nobilis and M. communis against adults of beetle were calculated 243.78 and 56.11?μl/l and LC95 values for them were 685.85 and 144.01?μl/l, respectively. For the larvae of T. castaneum, the LC50 values for L. nobilis and M. communis were 211.64 and 69.63 and LC95 values were 656.84 and 183.65?μl/l, respectively. Results showed that these essential oils may have potential as botanical control agents against larvae and adults of T. castaneum.  相似文献   

2.
《Journal of Asia》2006,9(1):61-66
Atremisia sieberi Besser is a widely distributed plant that grows in many areas of Iran and has strong insecticidal activity against stored product pests, so an experiment was conducted to investigate fumigant toxicity of the A. sieberi oil collected from Karaj region of Iran. The oil was applied against one to seven day old adults of three major stored product insects including: Callosobruchus maculatus (Fab.), Sitophilus oryzae (L.), and Tribollium castaneum (Herbst). The potency of fumigant toxicity of A. sieberi on C. maculatus was higher (LC50: 1.64 μL per L) than S. oryzae (LC50: 4.41 μL per L) and T. castaneum (LC50: 20.31 μ.L per L). The relationships between the time exposure and oil concentration on mortality show that the mortality was increased as oil concentration and exposure time was increased. The concentration of 185 μL per L and exposure time of 24h was enough to obtain 100% kill of the insects. It was also found that the regions where A. sieberi grows affect essential oil components of the plant and can play an important role in properties of fumigant toxicity.  相似文献   

3.
Aphis gossypii Glover (Homoptera: Aleyrodidae) is one of the most important pests of agriculture worldwide. To control the pest population, research on the use of the environmental and plant-based compounds has increased in recent decades. So, in this study, effect of fumigant toxicity of Artemisia dracunculus L. essential oil on adults of the mentioned pest was studied. The essential oil of this plant was subjected to hydro-distillation using a Clevenger apparatus. All bioassay examinations were conducted at 27?±?2 and 65?±?5?°C relative humidity and a photoperiod of 16:8?h (light:dark). This research was performed in a completely random design with six treatments in different concentrations and times to evaluate the level of LC50 and LT50. Each treatment was evaluated in three replicates for different concentrations and times with each replicate consisting of 20 same-age adult pests. The results showed that the use of the essential oil of A. dracunculus L. shows significant mortality of pest 24?h after treatment. LC50 value of this essential oil on adults of A. gossypii was 18.63?μL/L of air and LT50 value of the essential oil on the mentioned pest resulted to be 10.74?h with a concentration of 18.63?μL/L of air. The results showed that by increasing the concentration and duration of essence treatment, the mortality rate also increased. Experiment results showed that A. dracunculus L. oil has strong effect on the above-mentioned pest and it will be suggested for using in the mentioned integrated pest management programmes in greenhouses for its high potential in fumigant toxicity.  相似文献   

4.
In the present study, six monoterpenes [(?)-citronellal, p-cymene, (?)-menthone, α-pinene, α-terpinene, and (?)-terpinen-4-ol] and two phenylpropenes [trans-cinnamaldehyde and eugenol] were evaluated for their contact and fumigant toxicities against Sitophilus oryzae adults. The effects of these compounds on the mortality of S. oryzae adults in stored wheat and their inhibitory effects on acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) were examined. The tested compounds showed varying degrees of contact toxicity, with trans-cinnamaldehyde (LC50 = 0.01 mg/cm2) being the most potent compound, followed by (?)-menthone (LC50 = 0.013 mg/cm2) and eugenol (LC50 = 0.015 mg/cm2). In a fumigant toxicity assay, the monoterpenes α-terpinene, p-cymene, and (?)-menthone showed the highest toxicities (LC50 = 50.79, 52.37, and 54.08 μl/L air, respectively). Trans-cinnamaldehyde, (?)-citronellal, and eugenol were the least toxic (LC50 > 100 μl/L air). In general, the oxygenated compounds exhibited high contact toxicities while the hydrocarbon compounds exhibited high fumigant toxicities. When tested for their insecticidal activities against S. oryzae in stored wheat, trans-cinnamaldehyde was found to be the most potent compound, with 73.9% mortality at an application rate of 0.5 g/kg and complete mortality (100%) at 1 and 5 g/kg after 1 week of treatment. All of the tested compounds showed AChE inhibition, although (?)-citronellal and trans-cinnamaldehyde presented the strongest enzyme inhibition, with IC50 values of 18.40 and 18.93 mM, respectively. On the other hand, (?)-terpinene-4-ol exhibited the highest inhibition of ATPases, followed by α-pinene and α-terpinene.  相似文献   

5.
The Indian sarsaparilla (Hemidesmus indicus) is a commonly used plant in Indian traditional medicine of Ayurveda for the preparation of various non-alcoholic beverages. However, limited studies are available on the essential oil of H. indicus roots (HRO); therefore, the study evaluated the antioxidant, anti-inflammatory and antidiabetic activities of H. indicus root essential oil as well as insecticide potential against the common pests of stored food materials (Sitophilus oryzae, Callosobruchus maculatus and Tribolium castaneum). The repellant efficacy of HRO was found to be high against S. oryzae (8.21 ± 0.55 μg/mL). Likewise, the fumigant potential was also observed for HRO against these pests; the higher activities were observed against S. oryzae and C. maculatus (32.46 ± 1.42 and 35.18 ± 1.62 μg/L). Besides, the essential oil was also found to be active as a contact poison, however, against all the three pests, the toxicity was above 100 μg/mm3, being the highest against C. maculatus (122.8 ± 3.57 μg/mm3). To analyze the possible effect of the essential oil on grains, the different grains were allowed to germinate and compared to that of normal; thus, the non-toxic nature of HRO against the stored products is also confirmed. The essential oil shown to have DPPH hydrogen peroxide and ABTS radical scavenging, nitric oxide scavenging potential, and inhibition of lipoxgenase, alpha-amylase and alpha-glucosidase. Overall, the present study concludes that the H. indicus may be a suitable repellant and fumigant agent against different pests of stored products and a possible antioxidant, anti-inflammatory, and anti-diabetic agent.  相似文献   

6.
In our screening program for new agrochemicals from local wild plants, Artemisia lavandulaefolia and A. sieversiana were found to possess insecticidal activity against the maize weevil Sitophilus zeamais. The essential oils of the aerial parts of the two plants were obtained by hydrodistillation and analyzed by GC and GC/MS. The main components of A. lavandulaefolia oil were caryophyllene (15.5%), β‐thujone (13.8%), eucalyptol (13.1%), and β‐farnesene (12.3%), and the principal compounds identified in A. sieversiana oil were eucalyptol (9.2%), geranyl butyrate (9.2%), borneol (7.9%), and camphor (7.9%). The essential oils of A. lavandulaefolia and A. sieversiana possessed fumigant toxicity against S. zeamais adults with LC50 values of 11.2 and 15.0 mg/l air, respectively. Both essential oils also showed contact toxicity against S. zeamais adults with LD50 values of 55.2 and 112.7 μg/adult, respectively.  相似文献   

7.
Two of the major constituents of the essential oil of garlic, Allium sativum L., methyl allyl disulfide and diallyl trisulfide, were tested against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst) for contact toxicity, fumigant toxicity, and antifeedant activity. The contact and fumigant toxicities of diallyl trisulfide were greater than that of methyl allyl disulfide to the adults of these two species of insects. These two compounds were also more toxic to T. castaneum adults than to S. zeamais adults. Older T. castaneum larvae were more susceptible to the contact toxicity of the two compound, whereas younger larvae were more susceptible to the fumigant toxicity of these compounds. Both compounds reduced egg hatching of T. castaneum and subsequent emergence of progeny. Diallyl trisulfide totally suppressed egg hatching at 0.32 mg/cm2, and larval and adult emergence at 0.08 mg/cm2. Methyl allyl disulfide significantly decreased the growth rate, food consumption, and food utilization of adults of both insect species, with feeding deterrence indices of 44% at 6.08 mg/g food for S. zeamais and 1.52 mg/g food for T. castaneum. However, it did not affect any nutritional indices of T. castaneum larvae. Diallyl trisulfide significantly reduced all of the nutritional indices in all of the insects tested. Feeding deterrence indices of 27 and 51% were obtained in S. zeamais adults and T. castaneum larvae, respectively, at the concentration of 2.98 mg/g food, whereas feeding deterrence of 85% was achieved in T. castaneum adults at a much lower concentration of 0.75 mg/g food. Hence, diallyl trisulfide is a more potent contact toxicant, fumigant and feeding deterrent than methyl allyl disulfide.  相似文献   

8.
In our screening program for new agrochemicals from local wild plants, essential oil of Artemisia vestita Wall (Asteraceae) was found to possess strong insecticidal activity against maize weevil, Sitophilus zeamais Motsch. Essential oil of aerial parts of A. vestita was obtained from hydrodistillation and was investigated by GC and GC–MS. The main components of essential oil were grandisol (40.29%), 1,8-cineol (14.88%) and camphor (11.37%). The essential oil of A. vestita possessed strong fumigant toxicity against S. zeamais adults with a LC50 value of 13.42 mg/L air. The essential oil of A. vestita also showed contact toxicity against S. zeamais adults with a LD50 value of 50.62 mg/adult.  相似文献   

9.
Abstract:  The acute toxicity of essential oils from the whole fruit (EF) or from the fibres of the fruit (FF) of the local aromatic plants Xylopia aethiopica Dunal (Annonaceae) collected in north Cameroon was evaluated on Sitophilus zeamais adults. A concentration of 1 ml of essential oil per 100 g of maize seeds was tested to determine weevil mortality after 24 h of exposure. Under these conditions, the essential oil derived from both EF and FF of X. aethiopica led to 100% mortality. In a second step, proportions of active compounds present in the oil of both EF and FF of X. aethiopica were quantified. The toxicity of the four main compounds was tested against S. zeamais : α -pinene, β -pinene, Δ-3-carene and terpinen-4-ol according to their proportion in the essential oil of the concerned plant part. β -pinene and terpinen-4-ol were responsible for 50% of the mortality at the proportion found in EF and FF essential oils respectively. When mixed, a synergic effect of the compounds was observed that restored the mortality percentage observed for the crude oil. It appears that X. aethiopica essential oil could be a potential source of natural and low-cost insecticide to control storage pests.  相似文献   

10.
Greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is one of the most injurious pests of greenhouse crops and ornamental plants in worldwide, both outdoor and indoor. This insect, feeding on plant sap, producing honeydew and transmitting plant viruses, causes quantitative and qualitative damages in plants. For controlling this pest in greenhouse, plant essential oils are mentioned instead of chemical insecticidal. So, in this research, fumigant toxicity of Carum copticum L. (Fam.: Apiaceae) plant oil on mentioned adult pest was surveyed. Dry ground seeds were subjected to hydrodistillation using a modified Clevenger-type apparatus and the resulting oil contained Thymol (50.07%), Gama-Terpinene (23.99%), P-Cymene (22.9%), Myrcene (0.51%) and 1,8-Cineole (0.5%). All bioassay tests were conducted at 27?±?2?°C, 65?±?5 RH and a photoperiod of 16:8?h (light: dark). This research was performed with a completely random design with six treatments (five different concentrations of essential oils plus control). Each concentration includes of three replicates and each replicate consisted of 20 adult of pests. The results showed that aforementioned essential oil shows significant mortality of adults 24?h after exposure. The value LC50 of mentioned plant oil on T. vaporariorum was 1.03?μl?L/L air. And mortality percentage shows higher sensitivity of T. vaporariorum against application of essential oil. The value LT50 estimated for T. vaporariorum in concentration of 1.03?μl?L/L air was 7.18?h. Fumigant toxicity this essential oil has had an ordered relationship with the concentration and time exposure. The results of this research showed that mentioned plant oil had appropriate insecticidal effects on these greenhouse pests. The findings showed that C. copticum L. oil has high impact on the above-mentioned pests and it is suggested because of its high potential in fumigant toxicity and its use in integrated pest management programmes in greenhouses is mentioned.  相似文献   

11.
Head space volatiles, including 73% di-n-propyl disulfide, were collected from freshly crushed neem seeds. This compound along with previously reported diallyl disulfide (di-2-propenyl disulfide) were toxic when applied topically or as a fumigant to Tribolium castaneum adults and 8-, 12-, and 16-d-old larvae, and Sitophilus oryzae adults. Di-n-propyl disulfide significantly decreased the growth rate and dietary utilization with moderate inhibition of food consumption in both insects. The total coefficient of deterrence for this compound ranged between 68.5 and 178.6, which suggests that it has medium to very good deterrent activity vis-à-vis the treatment concentration and instar. Di-n-propyl disulfide and diallyl disulfide presented a similar effect on efficiency of conversion of ingested food, which is reduced 3-fold; this implies that both compounds are physiological toxicants. Present studies clearly demonstrate that di-n-propyl disulfide could be a potent toxicant, fumigant, and feeding deterrent for stored grain pests, if a suitable formulation and application procedure are developed.  相似文献   

12.
【目的】为探讨马缨丹Lantana camara L.叶片精油化学成分以及其对3种害虫的生物活性,以应用于生物防治。【方法】马缨丹叶片经水蒸气蒸馏法提取精油,产率为0.21%。经过气-质联用仪(GCMS)分析,从马缨丹叶片精油中检测出主要的26种化合物,其中α-姜黄烯(α-curcumene,32.76%),β-石竹烯(β-caryophyllene,16.36%),石竹烯氧化物(Caryophyllene oxide,12.22%),桉油烯醇(Spathulenol,10.48%)含量较高,并对3种不同害虫进行生物活性测定。【结果】生物测定结果表明,马缨丹精油对米象Sitophilus oryzae成虫和Ⅳ龄埃及伊蚊Aedes aegypti幼虫的触杀效果显著,LC50分别为0.92 mg/cm2和32.33μg/m L。随着浓度的升高,对白蚁驱避作用增强,白蚁死亡率增加;高浓度精油对白蚁有触杀作用,但较低浓度对白蚁无显著影响。【结论】本研究证明马缨丹叶片精油对3种害虫有良好防治的效果。  相似文献   

13.
The rice weevil, Sitophilus oryzae L., adults were highly susceptible by contact to l-carvone, d-carvone, and dihydrocarvone when compared with the lesser grain borer, Rhyzopertha dominica F., adults and red flour beetle, Tribolium castaneum (Herbst.). Adults of R. dominica were more susceptible than the other species to fumigant vapors of l-carvone, d-carvone, and dihydrocarvone. The three larval stages (14-, 16-, and 18-d-old) of T. castaneum progressively became more susceptible with age toward contact toxicity of three test compounds but in fumigant toxicity, 16-d-old larvae of T. castaneum were more susceptible to the three compounds. Comparison of contact and fumigant toxicity of the test compounds indicates that l-carvone and d-carvone possess 24 times more fumigant toxicity toward adults of R. dominica than its contact toxicity. Overall order of toxicity was l-carvone > d-carvone > dihydrocarvone. Egg hatching and subsequent larval and adult survival of T. castaneum were significantly reduced when the eggs of T. castaneum were treated with l-carvone, d-carvone, and dihydrocarvone. l-Carvone completely suppressed egg hatching at the concentration of 7.72 mg/cm2. Data on feeding-deterrent indices indicate the high potency of l-carvone as feeding-deterrent in order of S. oryzae adults > T. castaneum adults > R. dominica adults > T. castaneum larvae.  相似文献   

14.
The fumigant effect of Mentha piperita and Ocimum basilicum oils and their mixture against adults and eggs of Callosobruchus chinensis (L.) was evaluated. Bioassay experiments showed that Ocimum basilicum oil was significantly effective against adult and egg stage which was the least effective. However, in the fumigant toxicity experiments against adult stage, Ocimum basilicum oil at a dose of 1.0 μl/38.5 ml air caused 100% mortality (LC50 = 1.88), the mixture of both oils at a dose of 6.0 μl/38.5 ml air caused 100% mortality (LC50 = 10.3) and Mentha piperita oil at a dose of 80.0 μl/38.5 ml air caused 80.0% mortality (LC50 = 41.224) during a one day exposure period. Regarding the oviposition deterrent activity, Ocimum basilicum oil achieved 100% oviposition deterrent (at a dose of 0.5 μl/38.5 ml air) followed by the mixture of Mentha piperita and Ocimum basilicum oils, which achieved 71.22% oviposition deterrent (at a dose of 1.0 μl/38.5 ml air) and Mentha piperita oil, which achieved 39.6% oviposition deterrent (at a dose of 5.0 μl/38.5 ml air). The essential oils and their mixtures studied here determined a significant decrease in the number of eggs hatched and in the emergence of adults. The eggs failed to hatch on using Ocimum basilicum oil at a dose of 0.6 μl/38.5 ml air. However, the number of eggs hatched decreased to 7.4 on using a mixture of oils at a dose of 2.0 μl/38.5 ml air and 14.0 with Mentha piperita oil at a dose of 80.0 μl/38.5 ml air compared with 25.0 eggs hatched in the control experiments. On the other hand, the percentage reduction in emerging adults were 100% for Ocimum basilicum oil, 90.9% for a mixture of the two oils and 72.7% for Mentha piperita oil. Results showed that Ocimum basilicum oil and Ocimum basilicum oils plus Mentha piperita oils in blend are potential alternatives to synthetic fumigants in the treatment of durable agricultural products. Successful adoption of plant oils in the protection of food commodities promises an eco-friendly option compatible with international biosafety regulations.  相似文献   

15.
《Journal of Asia》2014,17(1):13-17
Two commercialized essential oils and their constituent compounds were investigated for fumigant and contact activities against two grain storage insects, adults of the maize weevil (Sitophilus zeamais) and the red flour beetle (Tribolium castaneum). The two commercialized basil and orange oils showed strong fumigant and contact activities against S. zeamais and T. castaneum. The constituents of the basil oil were linalool (21.83%), estragole (74.29%), and α-humulene (2.17%), and those of the orange oil were α-pinene (0.54%), sabinene (0.38%), β-myrcene (1.98%), limonene (96.5%), and linalool (0.6%). As a toxic fumigant, the basil oil was more effective (24-h LC50 = 0.014 and 0.020 mg cm 3) than the orange oil (24-h LC50 = 0.106 and 0.130 mg cm 3) against S. zeamais and T. castaneum adults, respectively. Among the constituents of the two essential oils, the toxicity of estragole was the highest (0.004 and 0.013), followed by linalool (0.016 and 0.023), limonene (0.122 and 0.171), α-pinene (0.264 and 0.273), and β-myrcene (0.274 and 0.275) based on 24-h LC50 values (mg cm 3). Similar results were obtained in a contact toxicity test. The contact activity of basil oil was more toxic than orange oil, and estragole and linalool showed pronounced contact toxicity against S. zeamais and T. castaneum adults. Alpha-humulene had no activity as a fumigant at the tested doses, but it did have an effect as a contact poison, having 24-h LD50 values of 0.040 and 0.045 mg adult 1 to S. zeamais and T. castaneum, respectively. Although basil oil, orange oil, and their components displayed both contact and fumigant toxicities, their effects were mainly exerted by fumigant action via the vapor phase. Thus, basil oil, orange oil, and their components could be potential candidates as new fumigants for the control of S. zeamais and T. castaneum adults.  相似文献   

16.
Two-spotted spider mite, Tetranychus urticae Koch is the major pest of various plants worldwide. Now the control is dependent on the use of chemical pesticides. Plant compounds are recently known as biopesticides. Essential oil of Elettaria cardamomum was researched on repellent and oviposition inhibition of T. urticae. The LC50 values of fumigant toxicity of this oil on adults and eggs of the two spotted spider mite were 7.26 and 8.82?μL/L air, respectively. Also LT50 value of essential oil at 45?μL/L air was 23.86?h and LT50 value of essential oil at 60?μL/L air was 9.01?h. In addition, different concentrations of the essential oil of E. cardamomum significantly affected oviposition deterrence and repellency of adults. The results of this study indicated that essential oil of E. cardamomum may be considered as a biopesticide to control two spotted spider mites.  相似文献   

17.
Essential oils are one of the known plant materials for insect pest control. The studies about essential oils application for control of insect pest population has been started in recent years. This study aims to investigate repellency effect and fumigant toxicity of Mentha piperita and Cuminum cyminum essential oil on Tribolium castaneum and Sitophilus oryzae. The results showed that the mortality rate of adult insects was increased with increase in essential oil concentration. The highest pest mortality rate in the case of M. piperita and C. cyminum on T. castaneum and S. oryzae was 64, 68, 82 and 78%, respectively. The average insect mortality was significantly different in various concentrations in most of the treatments. Amounts of LC50 were 0.421, 0.271, 0.135 and 0.136 (ml/ml) for M. piperita and C. cyminum essential oil on T. castaneum and S. oryzae, respectively. Different concentrations of M. piperita and C. cyminum essential oil had different repellency effect on T. castaneum and S. oryzae. Repellency effect was increased with increase in essential oil concentration, and the highest repellency effect was belonged to the highest concentration. Essential oils of M. piperita and C. cyminum caused 61.2 and 66.4% repellency on T. castaneum. Meanwhile, their effect was found to be 55.2 and 60.4% repellency on S. oryzae at the highest concentration.  相似文献   

18.
Plant secondary metabolites play an important role in plant-insect interactions and therefore such compounds may have insecticidal or antifeedant activity against insects. Carum copticum C. B. Clarke (Apiaceae) is one of these plants that have medicinal effects on humans. The chemical composition of the essential oil from dry seeds of C. copticum was studied by gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS). Thymol (41.34%),α-terpinolene (17.46%) and ρ-cymene (11.76%) were found to be the major constituents of the oil. In fumigant toxicity tests with the essential oil against adults of Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) at 27 ±1℃ and 60% ± 5% RH, it was observed that S. oryzae (LC50 = 0.91 μL/L) were significantly susceptible than T. castaneum (LC50 = 33.14 μL/L). The mortalities of the insect species reached 100% at concentrations higher than 185.2 μL/L and 12-h exposure time. The findings indicate the strong insecticidal activity of C. copticum oil and its potential role as a fumigant for storedproduct insects.  相似文献   

19.
《Journal of Asia》2007,10(2):157-163
The fumigant toxicity of 66 plant essential oils to Plutella xylostella (L.) larvae and Cotesia glomerata (L.) adults was examined using a vapor-phase toxicity bioassay and compared with that of dichlorvos. Responses varied according to oil and insect species used. Based on 24 h LD50 values, pennyroyal oil [10.77 mg/filter paper (4.25 cm diameter)] was the most toxic fumigant, followed by rosemary and sage (Dalmatin) oils (15.15 mg/paper). Potent fumigant toxicity was also produced from armoise, buchu leaf, cedarleaf, coriander, eucalyptus, howood, lavender, myrtle, niaouli, peppermint, and rosewood oils (LD50, 21.29–27.31 mg/paper). All essential oils were less effective than dichlorvos (LD50, 0.52 mg/paper). Against adult C. glomerata, dichlorvos (LD50, 0.03 mg/paper) was the most toxic fumigant, whereas the LD50 values of the 14 essential oils ranged from 1.59 to 8.51 mg/paper. Based on selective toxicity ratio (STR, P. xylostella LD50/C. glomerata LD50), the 14 essential oils (STR, 2.5–14.5) are more selective than dichlorvos (STR, 17.3). The essential oils tested merit further study as potential fumigants for the control of P. xylostella in greenhouses because of their selective toxicity to adult C. glomerata and their much greater activity as a fumigant.  相似文献   

20.
The insecticidal activity and chemical constituents of the essential oil from Ajania fruticulosa were investigated. Twelve constituents representing 91.0% of the essential oil were identified, and the main constituents were 1,8‐cineole ( 41.40% ), (+)‐camphor ( 32.10% ), and myrtenol (8.15%). The essential oil exhibited contact toxicity against Tribolium castaneum and Liposcelis bostrychophila adults with LD50 values of 105.67 μg/adult and 89.85 μg/cm2, respectively. The essential oil also showed fumigant toxicity against two species of insect with LC50 values of 11.52 and 0.65 mg/l, respectively. 1,8‐Cineole exhibited excellent fumigant toxicity (LC50 = 5.47 mg/l) against Tcastaneum. (+)‐Camphor showed obvious fumigant toxicity (LC50 = 0.43 mg/l) against Lbostrychophila. Myrtenol showed contact toxicity (LD50 = 29.40 μg/cm2) and fumigant toxicity (LC50 = 0.50 mg/l) against Lbostrychophila. 1,8‐Cineole and (+)‐camphor showed strong insecticidal activity to some important insects, and they are main constituents of Afruticulosa essential oil. The two compounds may be related to insecticidal activity of Afruticulosa essential oil against Tcastaneum and Lbostrychophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号