首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of Raf-associated proteins have recently been identified, including members of the 14-3-3 family of phosphoserine-binding proteins. Although both positive and negative regulatory functions have been ascribed for 14-3-3 interactions with Raf-1, the mechanisms by which 14-3-3 binding modulates Raf activity have not been fully established. We report that mutational disruption of 14-3-3 binding to the B-Raf catalytic domain inhibits B-Raf biological activity. Expression of the isolated B-Raf catalytic domain (B-Rafcat) induces PC12 cell differentiation in the absence of nerve growth factor. By contrast, the B-Rafcat 14-3-3 binding mutant, B-Rafcat S728A, was severely compromised for the induction of PC12 cell differentiation. Interestingly, the B-Rafcat 14-3-3 binding mutant retained significant in vitro catalytic activity. In Xenopus oocytes, the analogous full-length B-Raf 14-3-3 binding mutant blocked progesterone-stimulated maturation and the activation of endogenous mitogen-activated protein kinase kinase and mitogen-activated protein kinase. Similarly, the full-length B-Raf 14-3-3 binding mutant inhibited nerve growth factor-stimulated PC12 cell differentiation. We conclude that 14-3-3 interaction with the catalytic domain is not required for kinase activity per se but is essential to couple B-Raf catalytic activity to downstream effector activation.  相似文献   

2.
A new series of chiral cis-3-aminoazetidines have been prepared from (S)-1-phenylethylamine. The catalytic activity of the new ligands has been tested in standard asymmetric reactions, in most cases moderate to good yields and moderate enantioselectivity have been observed.  相似文献   

3.
Two new inhibitors in which the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced with a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H, respectively, have been synthesized. Using these inhibitors, we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases the level of inhibitor binding 3-4-fold while a glyoxal group increases the level of binding by 500-2000-fold. We show that at pH 7.2 the effective molarities of the catalytic hydroxyl group of the active site serine are 41000-229000 and 101000-159000 for α-chymotrypsin and subtilisin Carlsberg, respectively. It is estimated that oxyanion stabilization and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low-barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pK(a) of the active site histidine, allowing it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.  相似文献   

4.
The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.  相似文献   

5.
We have developed an expression, refolding, and purification protocol for the catalytic domain of human Phosphodiesterase 3B (PDE3B). High level expression in Escherichia coli has been achieved with yields of up to 20mg/L. The catalytic domain of the enzyme was purified by affinity chromatography utilizing a novel affinity ligand. PDE3B, purified by affinity chromatography, with no single impurity #10878;1% as determined by SDS-PAGE, has a specific activity of 2210+/-442nmol/min/mg and a KM for cAMP of 44+/-4.5nM. Reducing the size of the expressed catalytic domain from residues 387-1112 to residues 654-1086 greatly reduced the aggregation phenomena observed with the affinity purified PDE3B. The definition of the N-terminus of the catalytic core was examined through the generation of several truncation mutants spanning amino acid residues 636-674. Constructs starting at E665 and M674 were fully active and devoid of activity, respectively. A construct starting at D668 had a Vmax reduced by approximately 10-fold relative to the longer constructs, yet the KM was not affected. This indicates the minimal N-terminus of the catalytic core lies between E665 and Y667. Refolding and affinity purification of the 654-1073 catalytic core of PDE3B has been employed to produce large quantities of highly pure enzyme for structural studies.  相似文献   

6.
Glutathione peroxidase (GPX) is a critical antioxidant selenoenzyme in organisms that protects cells against oxidative damage by catalyzing the reduction of hydroperoxides by glutathione (GSH). Thus, some GPX mimics have been generated because of their potential therapeutic value. The generation of a semisynthetic selenoenzyme with peroxidase activity, which matches the catalytic efficiencies of naturally evolved GPX, has been a great challenge. Previously, we semisynthesized a GPX mimetic with high catalytic efficiency using a rat theta class glutathione transferase (rGST T2-2) as a scaffold, in which the highly specific GSH-binding site is adjacent to an active site serine residue that can be chemically modified to selenocysteine (Sec). In this study, we have taken advantage of a new scaffold, hGSTZ1-1, in which there are two serine residues in the active site, to achieve both high thiol selectivity and highly catalytic efficiency. The GPX activity of Se-hGSTZ1-1 is about 1.5 times that of rabbit liver GPX, indicating that the selenium content at the active site plays an important role in enhancement of catalytic performance. Kinetic studies revealed that the catalytic mechanism of Se-hGSTZ1-1 belong in a ping-pong mechanism similar to that of the natural GPX.  相似文献   

7.
Four fluoro modified universal nucleobases have been synthesized. The universal nucleobases 1 and 2, containing a 2,4-difluorobenzene as nucleobase and a 4,6-difluorobenzimidazole, respectively, were chemically incorporated into a selected hammerhead ribozyme sequence which has already been retrovirally expressed as an anti-HIV ribozyme to investigate their effect on the catalytic activity of the ribozymes. The substitution of the natural nucleosides with either 1 or 2 results only in a small decrease of the catalytic activity. The Km value for the monosubstituted ribozyme with a 2,4-difluorobenzene is 309 nM(-1), the corresponding kcat is 2.91 x 10(-3) min(-1). A disubstituted hammerhead ribozyme carrying one of each modification has also been synthesized. For a further stabilization of the ribozyme/substrate complex 2'-(beta-aminoethoxy) modified fluorinated nucleosides 15 and 16 have been developed.  相似文献   

8.
Aside from serving as zinc ligands, kinetic data has implicated one or more additional histidines as catalytic residues in neutral endopeptidase ("enkephalinase") action. One of these histidines has previously been identified as histidine 704 (Bateman et al., J. Biol. Chem., 265:8365-8368, 1990). In order to determine whether a second histidine is involved in catalysis each of these residues not previously changed have been converted to glutamine by site directed mutagenesis. The resultant recombinant enzymes possess full catalytic activity indicating that histidine 704 is the only catalytic histidine in the enzyme.  相似文献   

9.
Zhang Z  Li M  Zi G 《Chirality》2007,19(10):802-808
A new series of chiral cis-3-hydroxyazetidines have been prepared from (R)-1-phenylethylamine. They have excellent catalytic activities and enantiomeric selectivities in asymmetric addition of diethylzinc to aromatic aldehydes.  相似文献   

10.
The enantioselective bioreduction of acetophenone and its various analogues has been carried out using a new yeast strain, Candida tropicalis MTCC 5158, to obtain the corresponding (S)-aryl ethanols with good yield and almost absolute enantioselectivity. The catalytic ability of this microbial strain for acetophenone reduction has been examined and also various parameters of the bioreduction reaction have been optimized. Studies on the catalytic performance showed that this microorganism is capable of carrying out the reduction in a broad range of pH (3-10) and temperature (25-40 degrees C), making it a more versatile biocatalyst. The preparative scale bioreduction of acetophenone using resting cells of Candida tropicalis yielded S-(-)-1-phenyl ethanol with 43% yield and >99% enantiomeric excess.  相似文献   

11.
The development of covalent drugs, specifically in cancer therapeutics, has recently sparked interest among the pharmaceutical research community. While representing a significant fraction of the drugs in the market, very few have been deliberately designed to interact covalently with their biological target. One of the enzymes that have been both covalently and noncovalently targeted is the Neural Precursor Cell Expressed Developmentally Downregulated gene 4-1 (Nedd4-1). This enzyme has been found to have multiple physiological implications, including its involvement in cancer invasion. A critical gap still remains in the molecular understanding of the structural mechanism upon the covalent and noncovalent binding to Nedd4-1. In this study, we explore the most optimal binding mechanism in the inhibition of the catalytic site of the Nedd4-1. Our results exhibited a greater stability in the covalent complex compared with the noncovalent complex. This was supported by the secondary structure elements that were more dominant in the covalently inhibited complex. This complex disclosed an optimal free binding energy landscape, induced by the catalytic site energy contributions that showed to be more favorable. The insights demonstrating the above binding mechanism of Nedd4-1 establishes covalent inhibition as the preferred method of inhibition of the enzyme. This investigation aids in the understanding of the structural mechanism of Nedd4-1 inhibition and would assist in the design of more potent covalent inhibitors at the catalytic site of Nedd4-1.  相似文献   

12.
It has been proposed that the active centre of cyclic AMP-dependent protein kinase contains an arginine-recognition site, which is considered to be essential for the function of the catalytic subunit of the kinase [Matsuo, Huang & Huang (1978) Biochem. J.173, 441-447]. The catalytic subunit can be inactivated by 3-(3-dimethylaminopropyl)-1-ethylcarbodi-imide and glycine ethyl ester at pH6.5. The enzyme can be protected from inactivation by preincubation with histone, a protein substrate of the enzyme. On the other hand, ATP, which also serves as a protein kinase substrate, does not afford protection. Polyarginine, a competitive inhibitor of protein kinase, which is known from kinetic studies to interact specifically with the arginine-recognition site, partially protects the catalytic subunit from inactivation by 3-(3-dimethylaminopropyl)-1-ethylcarbodi-imide. These results lead to the conclusion that the site of modification by carbodi-imide/glycine ethyl ester is most likely located at the arginine-recognition site of the active centre. A value of 1.7+/-0.2 (mean+/-s.d.) mol of carboxy groups per mol of catalytic subunit has been obtained for the number of essential carboxy groups for the function of protein kinase; a complete chemical modification of these essential carboxy groups results in total loss of catalytic activity. Finally, we have identified the essential carboxy group in the catalytic subunit of cyclic AMP-dependent protein kinase as being derived from glutamate residues. This is achieved by a three-step procedure involving an extensive proteolytic digestion of the [1-(14)C]glycine ethyl ester-modified enzyme and two successive high-voltage electrophoreses of the hydrolysate. It is concluded that 1.7mol of glutamyl carboxy groups per mol of catalytic subunit may be considered a component of the arginine-recognition site in the active centre of cyclic AMP-dependent protein kinase.  相似文献   

13.
Product inhibition studies on yeast phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) have been performed with 1,3-P2-glycerate. The results indicate that: 1. The catalytic reaction can be affected via four substrate binding sites, two for MgATP2- and two for 3-P-glycerate. 2. There is one catalytic centre per enzyme molecule. 3. The catalytic reaction primarily occurs at the 'first' or 'high affinity' MgATP2- and 3-P-glycerate binding sites. The 'second' set of sub-sites for these substrates are located in a region for regulation of the catalytic reaction. 4. The products of the reaction, 1,3-P2-glycerate and ADP, are preferentially bound to the regulatory region. 5. MgATP2- and 1,3-P2-glycerate are able to bind simultaneously to this region. When liganded with MgATP2- the apparent Ki value for 1,3-P2-glycerate increases from 3 microM to 20 microM.  相似文献   

14.
Haloacid dehalogenases are potentially involved in bioremediation of contaminated environments and few have been biochemically characterized from marine organisms. The l -2-haloacid dehalogenase (l -2-HAD) from the marine Bacteroidetes Zobellia galactanivorans DsijT (ZgHAD) has been shown to catalyze the dehalogenation of C2 and C3 short-chain l -2-haloalkanoic acids. To better understand its catalytic properties, its enzymatic stability, active site, and 3D structure were analyzed. ZgHAD demonstrates high stability to solvents and a conserved catalytic activity when heated up to 60°C, its melting temperature being at 65°C. The X-ray structure of the recombinant enzyme was solved by molecular replacement. The enzyme folds as a homodimer and its active site is very similar to DehRhb, the other known l -2-HAD from a marine Rhodobacteraceae. Marked differences are present in the putative substrate entrance sites of the two enzymes. The H179 amino acid potentially involved in the activation of a catalytic water molecule was confirmed as catalytic amino acid through the production of two inactive site-directed mutants. The crystal packing of 13 dimers in the asymmetric unit of an active-site mutant, ZgHAD-H179N, reveals domain movements of the monomeric subunits relative to each other. The involvement of a catalytic His/Glu dyad and substrate binding amino acids was further confirmed by computational docking. All together our results give new insights into the catalytic mechanism of the group of marine l -2-HAD.  相似文献   

15.
Sarno S  Marin O  Boschetti M  Pagano MA  Meggio F  Pinna LA 《Biochemistry》2000,39(40):12324-12329
Protein kinase CK2 ("casein kinase 2") holoenzyme is composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits. A truncated form of the beta-subunit lacking its C-terminal region (betaDelta171-215) has lost the ability to stably associate with the catalytic subunits and to display a number of properties which are mediated by structural elements still present in its sequence, notably down-regulation of catalytic activity, autophosphorylation, and responsiveness to polycationic effectors. All these functions are restored by simultaneous addition of a synthetic peptide reproducing the deleted fragment, beta170-215, which is able to associate with the catalytic subunits and to stimulate catalytic activity. This peptide includes a segment displaying significant sequence similarity with a region of cyclin A which interacts with the PSTAIRE motif of CDK2 eliciting its catalytic activity. A peptide reproducing this sequence (beta181-203), but not its derivative in which three nonpolar side chains have been replaced by polar ones, interacts with the alpha-subunit and stimulates its catalytic activity; it also partially restores the ability of truncated betaDelta171-215 to autophosphorylate. These data disclose the essential role of a structural module located between residues 181 and 203 in conferring regulatory properties to the beta-subunit of CK2.  相似文献   

16.
Biological Trace Element Research - Peroxidovanadium(V) and oxidovanadium(IV) compounds have been tested as peroxidase-similar compounds. Their catalytic performance was tested on phenol red and...  相似文献   

17.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

18.
Two protein kinase activities which differ in their catalytic activity towards endogenous and exogenous substrates have been detected and partially purified from heterogeneous nuclear ribonucleoprotein particles (hnRNP).Abbreviations hnRNP heterogeneous nuclear ribonucleoprotein particles - MOPS 3-[N-Morpholino] propanesulphonic acid - MES 2-[N-Morpholino] ethanesulphonic acid - IBMX isobutylmethylxanthine  相似文献   

19.
A 350 amino acid soluble fragment of the intracellular catalytic domain of the human transmembrane leukocyte antigen related (LAR) protein tyrosine phosphatase has been purified 17-fold to greater than 90% purity from an Escherichia coli expression vector in quantities sufficient for kinetic and structural characterization. To assess substrate specificity, phosphotyrosine peptides corresponding to autophosphorylation sites of the two major classes of tyrosine kinases have been synthesized. Thus 6-12-residue phosphotyrosine peptides of the insulin receptor and epidermal growth factor receptor kinase domains and of the autophosphorylation and C-terminal regulatory sites of p60src and p56lck have been analyzed for kcat and KM by using a nonradioactive chromogenic assay for Pi release. The catalytic domain of LAR PTPase shows kcat values of 20-70 s-1 for phosphotyrosine peptides and affinities that vary 150-fold from 27 microM to 4.1 mM.  相似文献   

20.
F11.2.32, a monoclonal antibody directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme. The antibody cross-reacts with peptides 36-46 and 36-57 from the protease. Crystals of the Fab have been obtained both in the free state and as complexes formed with the protease peptide fragments, 36-46 and 36-57. Diffraction data have been collected for the free and complexed forms of Fab F11.2.32 and preliminary models for the crystal structures were obtained by molecular replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号