首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. A complex of IL-11 and the IL-11 receptor (IL-11R) has been shown to interact with gp130, with high affinity, and to induce gp130- dependent signaling. In this study, we have identified residues crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130 by examining the activities of mIL-11 mutants in receptor binding and cell proliferation assays. The location of these residues, as predicted from structural studies and a model of IL-11, reveals that mIL-11 has three distinct receptor binding sites. These are structurally and functionally analogous to the previously defined receptor binding sites I, II, and III of interleukin-6 (IL-6). This supports the hypothesis that IL-11 signals via the formation of a hexameric receptor complex and indicates that site III is a generic feature of cytokines that signal via association with gp130.  相似文献   

2.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

3.
Molecular cloning and expression of an IL-6 signal transducer, gp130   总被引:100,自引:0,他引:100  
M Hibi  M Murakami  M Saito  T Hirano  T Taga  T Kishimoto 《Cell》1990,63(6):1149-1157
Interleukin-6 (IL-6) signal is transduced through a membrane glycoprotein, gp130, which associates with IL-6 receptor (IL-6-R). A cDNA encoding human gp130 has been cloned, revealing that it consists of 918 amino acids with a single transmembrane domain. The extracellular region comprises six units of a fibronectin type III module, and part of this region of approximately 200 amino acids has features typical of a cytokine receptor family. A cDNA-expressed gp130 showed no binding property to IL-6 or several other cytokines. Although a transfectant with an IL-6-R cDNA expressed mainly low affinity IL-6 binding sites, an increase in high affinity binding sites was observed after cotransfection with a gp130 cDNA. This confirmed that a gp130 is involved in the formation of high affinity IL-6 binding sites. A cloned gp130 could associate with a complex of IL-6 and soluble IL-6-R and transduce the growth signal when expressed in a murine IL-3-dependent cell line.  相似文献   

4.
Cytokines of the interleukin-6 (IL-6)-type family all bind to the glycoprotein gp130 on the cell surface and require interaction with two gp130 or one gp130 and another related signal transducing receptor subunit. In addition, some cytokines of this family, such as IL-6, interleukin-11, ciliary neurotrophic factor, neuropoietin, cardiotrophin-1, and cardiotrophin-1-like-cytokine, interact with specific ligand binding receptor proteins. High- and low-affinity binding sites have been determined for these cytokines. So far, however, the stoichiometry of the signaling receptor complexes has remained unclear, because the formation of the cytokine/cytokine-receptor complexes has been analyzed with soluble receptor components in solution, which do not necessarily reflect the situation on the cellular membrane. Consequently, the binding affinities measured in solution have been orders of magnitude below the values obtained with whole cells. We have expressed two gp130 extracellular domains in the context of a Fc-fusion protein, which fixes the receptors within one dimension and thereby restricts the flexibility of the proteins in a fashion similar to that within the plasma membrane. We measured binding of IL-6 and interleukin-b receptor (IL-6R) by means of fluorescence-correlation spectroscopy. For the first time we have succeeded in recapitulating in a cell-free condition the binding affinities and dynamics of IL-6 and IL-6R to the gp130 receptor proteins, which have been determined on whole cells. Our results demonstrate that a dimer of gp130 first binds one IL-6/IL-6R complex and only at higher ligand concentrations does it bind a second IL-6/IL-6R complex. This view contrasts with the current perception of IL-6 receptor activation and reveals an alternative receptor activation mechanism.  相似文献   

5.
A number of secreted cytokines, such as interleukin-6 (IL-6), are attractive targets for the treatment of inflammatory diseases. We have determined the solution structure of mouse IL-6 to assess the functional significance of apparent differences in the receptor interaction sites (IL-6Rα and gp130) suggested by the fairly low degree of sequence similarity with human IL-6. Structure-based sequence alignment of mouse IL-6 and human IL-6 revealed surprising differences in the conservation of the two distinct gp130 binding sites (IIa and IIIa), which suggests a primacy for site III-mediated interactions in driving initial assembly of the IL-6/IL-6Rα/gp130 ternary complex. This is further supported by a series of direct binding experiments, which clearly demonstrate a high affinity IL-6/IL-6Rα-gp130 interaction via site III but only weak binding via site II. Collectively, our findings suggest a pathway for the evolution of the hexameric, IL-6/IL-6Rα/gp130 signaling complex and strategies for therapeutic targeting. We propose that the signaling complex originally involved specific interactions between IL-6 and IL-6Rα (site I) and between the D1 domain of gp130 and IL-6/IL-6Rα (site III), with the later inclusion of interactions between the D2 and D3 domains of gp130 and IL-6/IL-6Rα (site II) through serendipity. It seems likely that IL-6 signaling benefited from the evolution of a multipurpose, nonspecific protein interaction surface on gp130, now known as the cytokine binding homology region (site II contact surface), which fortuitously contributes to stabilization of the IL-6/IL-6Rα/gp130 signaling complex.  相似文献   

6.
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.  相似文献   

7.
Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.  相似文献   

8.
Cytokines are key mediators for the regulation of hemopoiesis and the coordination of immune responses. They exert their various functions through activation of specific cell surface receptors, thereby initiating intracellular signal transduction cascades which lead to defined cellular responses. As the common signal-transducing receptor subunit of at least seven different cytokines, gp130 is an important member of the family of hemopoietic cytokine receptors which are characterized by the presence of at least one cytokine-binding module. Mutants of gp130 that either lack the Ig-like domain D1 (DeltaD1) or contain a distinct mutation (F191E) within the cytokine-binding module have been shown to be severely impaired with respect to IL-6 induced signal transduction. After cotransfection of COS-7 cells with a combination of both inactive gp130 mutants, signal transduction in response to IL-6 is restored. Whereas cells transfected with DeltaD1 do not bind IL-6/sIL-6R complexes, cells transfected with the F191E mutant bind IL-6/sIL-6R with low affinity. Combination of DeltaD1 and F191E, however, leads to high-affinity ligand binding. These data suggest that two different gp130 epitopes, one on each receptor chain, sequentially cooperate in asymmetrical binding of IL-6/IL-6R in a tetrameric signaling complex. On the basis of our data, a model for the mechanism of IL-6-induced gp130 activation is proposed.  相似文献   

9.
Li H  Nicholas J 《Journal of virology》2002,76(11):5627-5636
Human herpesvirus 8-encoded interleukin-6 (vIL-6) signals through the gp130 signal transducer but is not dependent on the IL-6 receptor alpha subunit (IL-6R, gp80) that is required for signaling by endogenous IL-6 proteins; however, IL-6R can enhance vIL-6 activity and can enable signaling through a gp130 variant, gp130.PM5, that is itself unable to support vIL-6 signaling. These findings suggest that the vIL-6-gp130 interactions are qualitatively different from those of human IL-6 (hIL-6) and that vIL-6 signaling may be more promiscuous than that of hIL-6 but that IL-6R may play a role in vIL-6 signaling in vivo. To examine the receptor binding requirements of vIL-6, we have undertaken mutational analyses of regions of gp130 and IL-6R potentially involved in interactions with ligand or in functional complex formation and used these variants in functional, ligand-binding, and receptor dimerization assays. The data presented identify positions within two interstrand loops of the gp130 cytokine-receptor homology domain that are important for vIL-6 signaling and vIL-6-induced receptor dimerization and show that vIL-6, like hIL-6, can form complexes with IL-6R and gp130 but that the roles of putative cytokine-binding residues of IL-6R in ligand-induced functional complex formation are qualitatively different in the case of vIL-6 and hIL-6.  相似文献   

10.
No inhibition of IL-27 signaling by soluble gp130   总被引:6,自引:0,他引:6  
Soluble gp130 is the natural inhibitor of trans-signaling mediated by the soluble IL-6/IL-6R complex. In mouse models, recombinant sgp130 has been successfully applied for the treatment of diseases that are triggered and maintained by soluble IL-6R like Crohn's disease, peritonitis, rheumatoid arthritis, and colon cancer. The novel heterodimeric cytokine IL-27 (p28/EBV-induced gene 3) has been shown to act via a heterodimeric receptor complex of gp130 and the WSX-1 receptor, and to co-regulate the Th(1) immune response after infection. Therefore, we have tested the potential of the recombinant sgp130-Fc protein to also inhibit signaling-mediated IL-27. Here we show that sgp130-Fc does not interfere with IL-27 signaling. We therefore conclude that IL-27 does not bind with high affinity to gp130.  相似文献   

11.
Viral interleukin-6 (vIL-6) is a homolog of cellular IL-6 that is encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome. vIL-6 binds to the IL-6 signal transducer gp130 without the cooperation of the IL-6 high affinity receptor to induce STAT3 DNA binding and cell proliferation. Although vIL-6 is believed to be important in the pathogenesis of KSHV-induced diseases, its secretion and post-translational modifications have not previously been characterized. Pulse-chase analysis revealed that the half-time of vIL-6 secretion is approximately 8-fold longer than that of human IL-6. Yet, the vIL-6 signal sequence targets human IL-6 secretion to nearly wild-type levels. Surprisingly, vIL-6 was not secreted from a cell line that does not express gp130 but expression of human gp130 in these cells enabled the secretion of vIL-6. Consistent with this observation, complete maturation of gp130 N-glycans is inhibited by vIL-6 coexpression, suggesting that the binding of the receptor to vIL-6 occurs intracellularly in early or pre-Golgi compartments. Furthermore, a vIL-6 mutant containing an endoplasmic reticulum retention signal is not secreted but does still induce receptor activation and signaling. Secreted vIL-6 is completely glycosylated at both possible N-glycosylaton sites and contains a large proportion of immature high-mannose glycans that is not typical of cytokines. These findings suggest that vIL-6 may induce gp130 signaling by an exclusively autocrine mechanism that relies on intracellular binding to its receptor. During KSHV infection, vIL-6 may only induce signaling in KSHV-infected cells to benefit the viral life cycle and promote oncogenic transformation.  相似文献   

12.
Li H  Wang H  Nicholas J 《Journal of virology》2001,75(7):3325-3334
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease; in all of these diseases, interleukin-6 (IL-6) has been implicated as a likely mitogenic and/or angiogenic factor. HHV-8 encodes a homologue of IL-6 (viral IL-6 [vIL-6]) that has been shown to be biologically active in several assays and whose activities mirror those of its mammalian counterparts. Like these proteins, vIL-6 mediates its effects through the gp130 signal transducer, but signaling is not dependent on the structurally related IL-6 receptor (IL-6R; gp80) subunit of the receptor-signal transducer complex. However, as we have shown previously, IL-6R can enhance vIL-6 signal transduction and can enable signaling through a gp130 variant (gp130.PM5) that is itself unable to support vIL-6 activity, indicating that IL-6R can form part of the signaling complex. Also, our analysis of a panel of vIL-6 mutants in transfection experiments in Hep3B cells (that express IL-6R and gp130) showed that most were able to function normally in this system. Here, we have used in vitro vIL-6-receptor binding assays to demonstrate direct binding of vIL-6 to both gp130 and IL-6R and vIL-6-induced gp130-IL-6R complex formation, and we have extended our functional analyses of the vIL-6 variants to identify residues important for IL-6R-independent and IL-6R-dependent signaling through native gp130 and gp130.PM5, respectively. These studies have identified residues in vIL-6 that are important for IL-6R-independent and IL-6R-mediated functional complex formation between vIL-6 and gp130 and that may be involved directly in binding to gp130 and IL-6R.  相似文献   

13.
gp130 is a shared signal-transducing membrane-associated receptor for several hematopoietic cytokines. The 30 A resolution cryo-electron microscopy (cryo-EM) structure of the Interleukin 11(IL-11)-IL-11 Receptor-gp130 extracellular complex reveals the architecture and dynamics of this gp130-containing signaling complex. Normal-mode analysis reveals a repertoire of conformational changes that could function in signal triggering. This suggests a concerted mechanism of signaling involving all the components of the complex. This could provide a general mechanism of signal transfer for cytokines utilizing the JAK-STAT signaling cascade.  相似文献   

14.
15.
Interleukin-11 (IL-11) belongs to the interleukin-6 (IL-6)-type subfamily of long-chain helical cytokines including IL-6, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M, and cardiotrophin-1, which all share the glycoprotein gp130 as a signal transducing receptor component. IL-11 acts on cells expressing gp130 and the IL-11 receptor (IL-11R) alpha-subunit (IL-11Ralpha). The structural epitopes of IL-11 required for the recruitment of the individual receptor subunits have not yet been defined. Based on the structure of CNTF, a three-dimensional model of human IL-11 was built. Using this model, 10 surface exposed amino acid residues of IL-11 were selected for mutagenesis using analogies to the well-characterized receptor recruitment sites of IL-6, CNTF, and LIF. The respective mutants of human IL-11 were expressed as soluble fusion proteins in bacteria. Their biological activities were determined on HepG2 and Ba/F3-130-11alpha cells. Several mutants with substantially decreased bioactivity and one hyperagonistic mutant were identified and further analyzed with regard to recruitment of IL-11Ralpha and gp130. The low-activity mutant I171D still binds IL-11Ralpha but fails to recruit gp130, whereas the hyperagonistic variant R135E more efficiently engages the IL-11R subunits. The low-activity mutants R190E and L194D failed to bind to IL-11Ralpha. These findings reveal a common mechanism of receptor recruitment in the family of IL-6-type cytokines and offer considerable perspectives for the rational design of IL-11 antagonists and hyperagonists.  相似文献   

16.
17.
The interleukin-11 receptor (IL-11R) belongs to the hematopoietic receptor superfamily. The functional receptor complex comprises IL-11, IL-11R and the signal-transducing subunit gp130. The extracellular part of the IL-11R consists of three domains: an N-terminal immunoglobulin-like domain, D1, and two fibronectin-type III-like (FNIII) domains and D2 and D3. The two FNIII domains comprise the cytokine receptor-homology region defined by a set of four conserved cysteine residues in the N-terminal domain (D2) and a WSXWS sequence motif in the C-terminal domain (D3). We investigated the structural and functional role of the third extracellular receptor domain of IL-11R. A molecular model of the human IL-11/IL-11R complex allowed the identification of amino acid residues in IL-11R to be involved in ligand binding. Most of them were located in the third extracellular domain, which therefore should be able to bind with high affinity to IL-11. To prove this prediction, domain D3 of the IL-11R was expressed in Escherichia coli, refolded and purified. For structural characterization, circular dichroism, fluorescence and NMR spectroscopy were used. By plasmon resonance experiments, we show that the ligand-binding capacity of this domain is as high as that one for the whole receptor. These results provide a basis for further structural investigations that could be used for the rational design of potential agonists and antagonists essential in human therapy.  相似文献   

18.
Interleukin-6 (IL-6) is a cytokine with many activities. It has functions in the regulation of the immune system and the nervous system. Furthermore, IL-6 is involved in liver regeneration and in the metabolic control of the body. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R). The complex of IL-6 and IL-6R associates with a second protein, gp130, which thereupon dimerizes and initiates intracellular signaling. Whereas gp130 is expressed on all cells, IL-6R is only present on few cells in the body including hepatocytes and some leukocytes. Cells, which do not express IL-6R cannot respond to the cytokine, since gp130 alone has no measurable affinity for IL-6. Interestingly, a soluble form of IL-6R (sIL-6R) comprising the extracellular portion of the receptor can bind IL-6 with a similar affinity as the membrane bound IL-6R. The complex of IL-6 and sIL-6R can bind to gp130 on cells, which do not express the IL-6R, and which are unresponsive to IL-6. This process has been called trans-signaling. Here I will review published evidence that IL-6 trans-signaling is pro-inflammatory whereas classic IL-6 signaling via the membrane bound IL-6R is needed for regenerative or anti-inflammatory activities of the cytokine. Furthermore, the detailed knowledge of IL-6 biology has important consequences for therapeutic strategies aimed at the blockade of the cytokine IL-6.  相似文献   

19.
Gp130 is a shared signal-transducing receptor for a family of four-helix cytokines, of which interleukin-6 is a prototypic member. IL-6-type cytokines activate gp130 to elicit downstream intracellular JAK/STAT signaling cascades through formation of hetero-oligomeric receptor complexes. Interleukin-6 must first complex with its specific alpha-receptor (Ralpha) in order to bind and activate gp130. We have dissected the extracellular activation pathway of human gp130 by human IL-6 through reconstitution of soluble complexes representing intermediate and final states in the hierarchical assembly of the IL-6/IL-6Ralpha/gp130 signaling complex. To isolate these hetero-complexes, we have applied a protein engineering strategy of covalently linking IL-6 to its Ralpha, which results in a "hyperactive" single-chain complex (hyper-IL-6) which we express in both Escherichia coli and insect cells. We have determined that IL-6/IL-Ralpha and the cytokine-binding homology region (CHR) of gp130 (D2D3) form a stable trimolecular "recognition" complex (trimer) consisting of 1IL-6,1 IL-6Ralpha, and 1 gp130-CHR. Addition of the N-terminal (D1) Ig-like domain (IGD) of gp130 to the CHR results in a transition to a hexameric "activation" complex containing 2 IL-6, 2IL-6Ralpha, and 2 gp130. These results clearly demonstrate that the recognition and activation complexes are disparate hetero-oligomeric molecular species linked by the recruitment of the gp130 IGD by the unique site III epitope present on all gp130-class cytokines. The results of these studies are relevant to other members of the IL-6 family of gp130-cytokines and address a longstanding question concerning the respective roles of the gp130 CHR and IGD in assembly of the active signaling oligomer.  相似文献   

20.
Interleukin-6 (IL-6) is used as a growth factor by various tumor cells. It binds to a gp80 specific receptor (IL-6R) and then to a gp130 transducing chain. Both receptor chains are released as soluble functional proteins which circulate in biological fluids. To study the physiological role of these soluble receptors, both proteins were purified from human plasma and the kinetic constants of equilibria between IL-6 and its natural soluble IL-6R (sIL-6R) and gp130 receptor (sgp130) were measured using surface plasmon resonance analysis. Unexpectedly, natural sIL-6R and natural sgp130 were found to interact (Kd = 2.8 nM) in the absence of IL-6. No interaction was seen between the recombinant soluble receptors or between either natural soluble receptor and its recombinant partner. This binary complex was not due to copurification of IL-6 and was detected in human plasma of healthy donors. It results from either direct interaction between the two natural soluble receptors or indirect binding mediated by a yet unidentified copurified plasma molecule playing the role of an IL-6 antagonist. Once formed, the binary complex was found to be unable to bind IL-6. Soluble gp130 had already been shown to inhibit IL-6 signaling by inactivating the IL-6/IL-6R complex. In addition we show that, in the absence of IL-6, circulating natural sgp130 is able to inhibit directly the circulating sIL-6R that is a strong synergic molecule of IL-6 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号