共查询到20条相似文献,搜索用时 0 毫秒
1.
Scheggi S Leggio B Masi F Grappi S Gambarana C Nanni G Rauggi R De Montis MG 《Journal of neurochemistry》2002,83(4):895-903
Stressful events are accompanied by modifications in dopaminergic transmission in distinct brain regions. As the activity of the neuronal dopamine (DA) transporter (DAT) is considered to be a critical mechanism for determining the extent of DA receptor activation, we investigated whether a 3-week exposure to unavoidable stress, which produces a reduction in DA output in the nucleus accumbens shell (NAcS) and medial prefrontal cortex (mPFC), would affect DAT density and DA D1 receptor complex activity in the NAcS, mPFC and caudate-putamen (CPu). Rats exposed to unavoidable stress showed a decreased DA output in the NAcS accompanied by a decrease in the number of DAT binding sites, and an increase in the number of DA D1 binding sites and Vmax of SKF 38393-stimulated adenylyl cyclase. In the mPFC, stress exposure produced a decrease in DA output with no modification in DAT binding or in DA D1 receptor complex activity. Moreover, in the CPu stress exposure induced no changes in DA output or in the other neurochemical variables examined. This study shows that exposure to a chronic unavoidable stress that produces a decrease in DA output in frontomesolimbic areas induced several adaptive neurochemical modifications selectively in the nucleus accumbens. 相似文献
2.
The dopamine transporter (DAT) substrates dopamine, d-amphetamine (AMPH), and methamphetamine are known to rapidly and transiently reduce DAT activity and/or surface expression in dorsal striatum and heterologous expression systems. We sought to determine if similar substrate-induced regulation of DATs occurs in rat nucleus accumbens. In dorsal striatum synaptosomes, brief (15-min) in vitro substrate pre-exposure markedly decreased maximal [3 H]dopamine uptake velocity whereas identical substrate pre-exposure in nucleus accumbens synaptosomes produced a smaller, non-significant reduction. However, 45 min after systemic AMPH administration, maximal ex vivo [3 H]dopamine uptake velocity was significantly reduced in both brain regions. Protein kinase C inhibition blocked AMPH's down-regulation of DAT activity. DAT synaptosomal surface expression was not modified following either the brief in vitro or in vivo AMPH pre-exposure but was reduced after a longer (1-h) in vitro pre-exposure in both brain regions. Together, our findings suggest that relatively brief substrate exposure results in greater down-regulation of DAT activity in dorsal striatum than in nucleus accumbens. Moreover, exposure to AMPH appears to regulate striatal DATs in a biphasic manner, with an initial protein kinase C-dependent decrease in DAT-mediated uptake velocity and then, with longer exposure, a reduction in DAT surface expression. 相似文献
3.
Amphetamine is a central nervous system psychostimulant with a high potential for abuse. Recent literature has shown that genetic and drug‐induced elevations in dopamine transporter (DAT) expression augment the neurochemical and behavioral potency of psychostimulant releasers. However, it remains to be determined if the well‐documented differences in DAT levels across striatal regions drive regionally distinct amphetamine effects within individuals. DAT levels and dopamine uptake rates have been shown to follow a gradient in the striatum, with the highest levels in the dorsal regions and lowest levels in the nucleus accumbens shell; thus, we hypothesized that amphetamine potency would follow this gradient. Using fast scan cyclic voltammetry in mouse brain slices, we examined DAT inhibition and changes in exocytotic dopamine release by amphetamine across four striatal regions (dorsal and ventral caudate‐putamen, nucleus accumbens core and shell). Consistent with our hypothesis, amphetamine effects at the DAT and on release decreased across regions from dorsal to ventral, and both measures of potency were highly correlated with dopamine uptake rates. Separate striatal subregions are involved in different aspects of motivated behaviors, such as goal‐directed and habitual behaviors, that become dysregulated by drug abuse, making it critically important to understand regional differences in drug potencies.
4.
5.
Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole‐sensitized rats hints at inhibitory D2 autoreceptor function 下载免费PDF全文
Angélica P. Escobar Francisca A. Cornejo Montserrat Olivares‐Costa Marcela González José A. Fuentealba Katia Gysling Rodrigo A. España María E. Andrés 《Journal of neurochemistry》2015,134(6):1081-1090
6.
《Neuron》2023,111(10):1626-1636.e6
7.
The dopaminergic terminal field in the rat striatum is compartmentalized into sub-domains that exhibit distinct dynamics of electrically evoked dopamine release. The fast striatal domains, where dopamine release is predominantly vesicular, exhibit conventional dopaminergic activity. However, vesicular dopamine release is tonically autoinhibited in the slow domains, which suggests that dopamine reaches the autoreceptors via a non-vesicular route. Hence, it appears that the domains use distinct mechanisms to regulate the basal dopamine concentration available to activate, or not, pre-synaptic autoinhibitory receptors. However, direct detection of local variations in tonic extracellular dopamine concentrations is not yet possible. So, the present study employed voltammetry to test the hypothesis that the apparent rate of dopamine clearance from the extracellular space should be domain-dependent. The apparent rate of dopamine clearance is equal to the difference in the rates of dopamine release and uptake that determine extracellular dopamine concentrations. This study confirms that the apparent rate of dopamine clearance is slower in the slow striatal domains where vesicular dopamine release is tonically autoinhibited. These findings support the view that the basal concentration in slow domains is maintained by a non-vesicular release process, possibly transporter-mediated efflux. 相似文献
8.
Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food‐predictive stimuli 下载免费PDF全文
Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food‐predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal‐directed behaviors, including behaviors elicited by food‐predictive cues. Food‐seeking behavior is also strongly influenced by physiological state (i.e., hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood‐brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food‐predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS?). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub‐second fluctuations in NAc dopamine using fast‐scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS?, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue‐evoked mesolimbic signals that underlie food‐directed behaviors.
9.
Nomifensine attenuates d-amphetamine-induced dopamine terminal neurotoxicity in the striatum of rats
Long-term or high dose administration of d-amphetamine (AMPH) in the rat has been shown to result in dopamine terminal neurotoxicity in the striatum of rats. This phenomenon includes depletion of dopamine content, decreased activity of tyrosine hydroxylase and diminish in the number of dopamine reuptake transporter. Recent studies implicate a role of oxidative stress induced by dopamine in the AMPH-induced neurotoxicity. However, the primary source of dopamine responsible for radical formation during AMPH challenge has remained elusive. To elucidate this issue, the study was designed to examine the effects of nomifensine, a dopamine transporter blocker, and deprenyl, a monoamine oxidase B (MAO-B) inhibitor, on the prevention of striatal dopamine neurotoxicity in AMPH-treated rats. The results showed that nomifensine but not deprenyl protected against AMPH-induced long-term dopamine depletion. Correspondingly, the hydroxyl radical formation caused by AMPH in the striatum was attenuated by nomifensine, whereas its formation was not abolished by deprenyl. In conclusion, this study suggests that intracellular oxidative stress is more likely involved in the AMPH-induced dopamine terminal toxicity in the rat striatum, while this phenomenon is not mediated by MAO-B pathway. 相似文献
10.
Daws LC Callaghan PD Morón JA Kahlig KM Shippenberg TS Javitch JA Galli A 《Biochemical and biophysical research communications》2002,290(5):1545-1550
In HEK 293 cells expressing the human dopamine transporter (DAT), a 10-min incubation with 10 microM cocaine followed by extensive washing resulted in a 30% increase in [3H]dopamine (DA) uptake as well as an increase in cell surface DAT in biotinylation experiments. Consistent with this novel regulation, [3H]DA uptake into synaptosomes prepared from the nucleus accumbens of rats sacrificed 30 min after a single cocaine injection (30 mg/kg) was significantly increased compared to controls (56% increase in V(max), no change in K(m)). In addition, DA clearance in the striatum of anesthetized rats was increased after local application of a low (3 pmol) but not high (65 pmol) dose of cocaine, presumably as a result of mobilization of DAT to the cell surface. Cocaine-induced increases in cell surface expression of DAT and associated changes in DA clearance represent a novel mechanism that may play a role in its addictive properties. 相似文献
11.
Rats raised in an enriched environmental condition (EC) exhibit a decreased (35%) maximal velocity (V(max)) of [3H]dopamine (DA) uptake in medial prefrontal cortex (mPFC) compared with rats raised in an impoverished condition (IC); however, no differences between EC and IC groups in V(max) for [3H]DA uptake were found in nucleus accumbens and striatum. Using biotinylation and immunoblotting techniques, the present study examined whether the brain region-specific decrease in DA transporter (DAT) function is the result of a reduction in DAT cell surface expression. In mPFC, nucleus accumbens and striatum, total DAT immunoreactivity was not different between EC and IC groups. Whereas no differences in cell surface expression of DAT were found in nucleus accumbens and striatum, DAT immunoreactivity in the biotinylated cell surface fraction of mPFC was decreased (39%) in EC compared with IC rats, consistent with the magnitude of the previously observed decrease in V(max) for [3H]DA uptake in mPFC in EC rats. These results suggest that the decrease in DAT cell surface expression in the mPFC may be responsible for decreased DAT function in the mPFC of EC compared with IC rats, and that there is plasticity in the regulatory mechanisms mediating DAT trafficking and function. 相似文献
12.
Cannabinoid receptors have been implicated in the regulation of blood flow in the cerebral vasculature. Because the nucleus accumbens (NAc) shows high levels of central cannabinoid receptor 1 (CB1) expression we examined the effects of cannabinoids on the local transient alkaline shifts and increases in extracellular oxygen induced by electrical stimulation of the medial forebrain bundle (MFB) in conscious animals. These changes result from increases in cerebral blood flow (CBF) and metabolism in the NAc that are evoked by the stimulation. Oxygen and pH changes were monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in the NAc of freely moving rats. Administration of the cannabinoid receptor agonist WIN55,212-2 potently inhibited extracellular oxygen and pH changes, an effect that was reversed and prevented by pre-treatment with the CB1 receptor antagonists SR141716A and AM251. The effects on pH following WIN55,212-2 were similar to those following nimodipine, a recognized vasodilator. When AM251 was injected alone, the amplitude of electrically evoked pH shifts was unaffected. Administration of AM404 and VDM11, endocannabinoid transport inhibitors, partially inhibited pH transients in a CB1 receptor-dependent manner. The present findings suggest that CB1 receptor activation modulates changes in two well-established indices of local blood flow and metabolism resulting from electrically evoked activation of ascending fibers. Although endogenous cannabinoid tone alone is not sufficient to modify these responses, uptake blockade demonstrates that the system has the potential to exert CB1-specific effects similar to those of full agonists. 相似文献
13.
I. Mitch Taylor Kathryn M. Nesbitt Seth H. Walters Erika L. Varner Zhan Shu Kathleen M. Bartlow Andrea S. Jaquins‐Gerstl Adrian C. Michael 《Journal of neurochemistry》2015,133(4):522-531
Dopamine (DA), a highly significant neurotransmitter in the mammalian central nervous system, operates on multiple time scales to affect a diverse array of physiological functions. The significance of DA in human health is heightened by its role in a variety of pathologies. Voltammetric measurements of electrically evoked DA release have brought to light the existence of a patchwork of DA kinetic domains in the dorsal striatum (DS) of the rat. Thus, it becomes necessary to consider how these domains might be related to specific aspects of DA's functions. Responses evoked in the fast and slow domains are distinct in both amplitude and temporal profile. Herein, we report that responses evoked in fast domains can be further classified into four distinct types, types 1–4. The DS, therefore, exhibits a total of at least five distinct evoked responses (four fast types and one slow type). All five response types conform to kinetic models based entirely on first‐order rate expressions, which indicates that the heterogeneity among the response types arises from kinetic diversity within the DS terminal field. We report also that functionally distinct subregions of the DS express DA kinetic diversity in a selective manner. Thus, this study documents five response types, provides a thorough kinetic explanation for each of them, and confirms their differential association with functionally distinct subregions of this key DA terminal field.
14.
Brief,repeated exposure to substrates down-regulates dopamine transporter function in Xenopus oocytes in vitro and rat dorsal striatum in vivo 总被引:1,自引:0,他引:1
In heterologous expression systems, dopamine transporter (DAT) cell-surface localization is reduced after relatively prolonged exposure to d-amphetamine (AMPH) or dopamine (DA), suggesting a role for substrate-mediated regulation of transporter function. Here, we investigated whether brief, repeated periods of substrate exposure modulated transporter function, first, in an in vitro model system and, second, in intact rat brain. In human DAT-expressing Xenopus laevis oocytes, repeated exposure to low micromolar concentrations of DA, AMPH or tyramine markedly reduced transport-mediated currents. This functional down-regulation was attenuated by inclusion of a protein kinase C (PKC) inhibitor and probably reflects DAT redistribution, as cell-surface [3H]WIN 35 428 binding was significantly lower following DA exposure. High-speed chronoamperometry was used to measure clearance of exogenously applied DA in dorsal striatum (STR) and nucleus accumbens (NAc) of anesthetized rats. In STR, frequent (every 2 min) applications of DA altered DA clearance parameters in a manner consistent with profound down-regulation of DAT function. Similar changes were not observed in NAc or after repeated vehicle (ascorbic acid) application. Together, our results suggest that brief, repeated periods of substrate exposure lead to rapid down-regulation of DAT activity and that this type of regulation can occur in vivo in STR, but not NAc. 相似文献
15.
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. 相似文献
16.
17.
The objectives of the present study were to examine the involvement of GABA and cholinergic receptors within the nucleus accumbens (ACB) on feedback regulation of somatodendritic dopamine (DA) release in the ventral tegmental area (VTA). Adult male Wistar rats were implanted with ipsilateral dual guide cannulae for in vivo microdialysis studies. Activation of the feedback system was accomplished by perfusion of the ACB with the DA uptake inhibitor GBR 12909 (GBR; 100 microm). To assess the involvement of GABA and cholinergic receptors in regulating this feedback system, antagonists (100 microm) for GABAA (bicuculline, BIC), GABAB (phaclofen, PHAC), muscarinic (scopolamine, SCOP), and nicotinic (mecamylamine, MEC) receptors were perfused through the probe in the ACB while measuring extracellular DA levels in the ACB and VTA. Local perfusion of the ACB with GBR significantly increased (500% of baseline) the extracellular levels of DA in the ACB and produced a concomitant decrease (50% of baseline) in the extracellular DA levels in the VTA. Perfusion of the ACB with BIC or PHAC alone produced a 200-400% increase in the extracellular levels of DA in the ACB but neither antagonist altered the levels of DA in the VTA. Co-perfusion of either GABA receptor antagonist with GBR further increased the extracellular levels of DA in the ACB to 700-800% of baseline. However, coperfusion with BIC completely prevented the reduction in the extracellular levels of DA in the VTA produced by GBR alone, whereas PHAC partially prevented the reduction. Local perfusion of the ACB with either MEC or SCOP alone had little effect on the extracellular levels of DA in the ACB or VTA. Co-perfusion of either cholinergic receptor antagonist with GBR markedly reduced the extracellular levels of DA in the ACB and prevented the effects of GBR on reducing DA levels in the VTA. Overall, the results of this study suggest that terminal DA release in the ACB is under tonic GABA inhibition mediated by GABAA (and possibly GABAB) receptors, and tonic cholinergic excitation mediated by both muscarinic and nicotinic receptors. Activation of GABAA (and possibly GABAB) receptors within the ACB may be involved in the feedback inhibition of VTA DA neurons. Cholinergic interneurons may influence the negative feedback system by regulating terminal DA release within the ACB. 相似文献
18.
Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release 下载免费PDF全文
James R. Melchior Mark J. Ferris Garret D. Stuber David R. Riddle Sara R. Jones 《Journal of neurochemistry》2015,134(5):833-844
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi‐synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro‐β‐erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi‐synaptic modulation of DA release that is absent with optogenetically targeted stimulation.
19.
Rintaro Sugita Yutaka Sawa Soichiro Nomura Stevin H. Zorn Tadamitsu Yamauchi 《Neurochemical research》1989,14(3):267-270
The effect of reserpine (2 mg/kg i.p.) on both locomotor activity and the turnover of dopamine metabolite in the rat nucleus accumbens was estimated by using an activity monitor (Animex) and by in vivo brain microdialysis. Three to five hours after reserpine administration locomotor activity was reduced and there was a concomitant increase in the level of the dopamine metabolite, homovamillic acid. These findings suggest that depletion of dopamine from the nucleus accumbens may result in decreased locomotor activity. The data support the notion that dopamine in this tissue contributes to the control of locomotion. 相似文献
20.
Effect of operant self-administration of 10% ethanol plus 10% sucrose on dopamine and ethanol concentrations in the nucleus accumbens 总被引:4,自引:0,他引:4
Doyon WM Anders SK Ramachandra VS Czachowski CL Gonzales RA 《Journal of neurochemistry》2005,93(6):1469-1481
Although operant ethanol self-administration can increase accumbal dopamine activity, the relationship between dopamine and ethanol levels during consumption remains unclear. We trained Long-Evans rats to self-administer escalating concentrations of ethanol (with 10% sucrose) over 7 days, during which two to four lever presses resulted in 20 min of access to the solution with no further response requirements. Accumbal microdialysis was performed in rats self-administering 10% ethanol (plus 10% sucrose) or 10% sucrose alone. Most ethanol (1.6 +/- 0.2 g/kg) and sucrose intake occurred during the first 10 min of access. Sucrose ingestion did not induce significant changes in dopamine concentrations. Dopamine levels increased within the first 5 min of ethanol availability followed by a return to baseline, whereas brain ethanol levels reached peak concentration more than 40 min later. We found significant correlations between intake and dopamine concentration during the initial 10 min of consumption. Furthermore, ethanol-conditioned rats consuming 10% sucrose showed no effect of ethanol expectation on dopamine activity. The transient rise in dopamine during ethanol ingestion suggests that the dopamine response was not solely due to the pharmacological properties of ethanol. The dopamine response may be related to the stimulus properties of ethanol presentation, which were strongest during consumption. 相似文献