首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli anaerobic growth lowers the basal or induced levels of numerous enzymes associated with aerobic metabolism. Mutations in arcA (dye) at min 0 relieve this pleiotropic anaerobic repression and render the cell sensitive to the redox dye toluidine blue. In this study we identified a second pleiotropic control gene, arcB, at min 69.5. Mutations, including a deletion, in this gene also relieved the anaerobic repression and caused sensitivity to toluidine blue. Mutations in arcA or arcB did not significantly change the catabolite repression of the target phi(sdh-lacZ) operon, in which lacZ is fused to a structural gene for succinate dehydrogenase, nor did the mutations strikingly influence the pattern of excretion products during glucose fermentation. The presence of arcA+ in a multicopy plasmid restored anaerobic repression in arcB mutants, as indicated by the expression of phi(sdh-lacZ). The arcB product might be a sensor protein for the redox or energy state of the arc regulatory system.  相似文献   

2.
3.
A novel amperometric immunosensor for human chorionic gonadotropin (HCG) assay has been fabricated through incorporating toluidine blue (TB) and hemoglobin (Hb) on the multiwall carbon nanotube (MWNT)-chitosan (CS) modified glassy carbon electrode, followed by electrostatic adsorption of a conducting gold nanoparticles (nanogold) film as sensing interface. The MWNT-CS matrix provided a congenial microenvironment for the immobilization of biomolecules and promoted the electron transfer to enhance the sensitivity of the immunosensor. Due to the strong electrocatalytic properties of Hb and MWNT toward H(2)O(2), the Hb and MWNT significantly amplified the current signal of the antigen-antibody reaction. The immobilized toluidine blue as an electron transfer mediator exhibited excellent electrochemical redox property. After the immunosensor was incubated with HCG solution, the access of activity center of the Hb to toluidine blue was partly inhibited, which leaded to a linear decrease in the catalytic efficiency of the Hb to the oxidation of immobilized toluidine blue by H(2)O(2) over HCG concentration ranges from 0.8 to 500 mIU/mL. Under optimal condition, the detection limit for the HCG immunoassay was 0.3 mIU/mL estimated at a signal-to-noise ratio of 3. Moreover, the proposed immunosensor displayed a satisfactory stability and reproducibility.  相似文献   

4.
Rapid, onestep polychromatic staining of 0.75-1.5 μm epoxy sections of glutaraldehyde-osmium fixed tissues can be obtained with mixtures of basic fucbsin and toluidme blue O in alkaline polyethylene glycol ZOO (PEG ZOO). Sections are attached to slides by heating at 100 C for 45 seconds and stained at that temperature for 2-3 minutes with a solution consisting of PEG 200 (50 ml), 0.2 N KOH (0.75 ml), basic fuchsin (1.7 gm), and toluidine blue O (0.3 gm). Red-blue balance and selective staining of different structures can be controlled by varying the amount of toluidine blue added. After rinsing with 10% acetone and rapid drying, sections are covered with immersion oil or mounting medium and a cover-slip. Total time from cutting of a section to finished preparation is less than 6 minutes. This staining solution is stable, does not produce precipitates on the sections, and does not wrinkle or lift the sections from the slides.  相似文献   

5.
In muscle cells, reactive oxygen species (ROS) are continually generated. It is believed that these molecules have a well-established role as physiological modulators of skeletal muscle functions, ranging from development to metabolism and from blood flow to contractile functions. Moreover, ROS may contribute to the development of muscle fatigue, inflammation, and degeneration, and may be implicated in many muscle diseases. The aim of the present study was to verify the role of short or prolonged exposure to oxidative stress, generated by different concentrations of H(2)O(2), on growth, chromosomal aberrations, and apoptosis induced in cultured L6C5 rat muscle cells used as model for myoblasts. Our results indicate that, in L6C5 cells, reactive oxygen intermediates (ROI) can activate distinct cell pathways leading to cell growth induction and development of resistant phenotype, or to chromosomal aberrations, cell cycle arrest, or cell death. The positive vs. negative effects of H(2)O(2)-altered redox potential in myoblasts are strictly related to the intensity of oxidative stress, likely depending on the types and number of cellular targets involved. Among these, DNA molecules appear to be very sensitive to breakage by H(2)O(2), although DNA damage is not directly responsible for ROI-induced apoptosis in L6C5 rat myoblasts.  相似文献   

6.
Mitochondrial production of reactive oxygen species (ROS) at Complex I of the electron transport chain is implicated in the etiology of neural cell death in acute and chronic neurodegenerative disorders. However, little is known regarding the regulation of mitochondrial ROS production by NADH-linked respiratory substrates under physiologically realistic conditions in the absence of respiratory chain inhibitors. This study used Amplex Red fluorescence measurements of H2O2 to test the hypothesis that ROS production by isolated brain mitochondria is regulated by membrane potential (DeltaPsi) and NAD(P)H redox state. DeltaPsi was monitored by following the medium concentration of the lipophilic cation tetraphenylphosphonium with a selective electrode. NAD(P)H autofluorescence was used to monitor NAD(P)H redox state. While the rate of H2O2 production was closely related to DeltaPsi and the level of NAD(P)H reduction at high values of DeltaPsi, 30% of the maximal rate of H2O2 formation was still observed in the presence of uncoupler (p-trifluoromethoxycarbonylcyanide phenylhydrazone) concentrations that provided for maximum depolarization of DeltaPsi and oxidation of NAD(P)H. Our findings indicate that ROS production by mitochondria oxidizing physiological NADH-dependent substrates is regulated by DeltaPsi and by the NAD(P)H redox state over ranges consistent with those that exist at different levels of cellular energy demand.  相似文献   

7.
8.
Intrinsic oxidative stress through enhanced production of reactive oxygen species (ROS) in prostate and other cancers may contribute to cancer progression due to its stimulating effect on cancer growth. In this study, we investigate differential responses to exogenous oxidative stimuli between aggressive prostate cancer and normal cell lines and explore potential mechanisms through interactions between cytotoxicity, cellular ROS production and oxidative DNA damage. The circular, multi-copy mitochondrial DNA (mtDNA) is used as a sensitive surrogate to oxidative DNA damage. We demonstrate that exogenous H(2)O(2) induces preferential cytotoxicity in aggressive prostate cancer than normal cells; a cascade production of cellular ROS, composed mainly of superoxide (O(2)(-)), is shown to be a critical determinant of H(2)O(2)-induced selective toxicity in cancer cells. In contrast, mtDNA damage and copy number depletion, as measured by a novel two-phase strategy of the supercoiling-sensitive qPCR method, are very sensitive to exogenous H(2)O(2) exposure in both cancer and normal cell lines. Moreover, we demonstrate for the first time that the sensitive mtDNA damage response to exogenous H(2)O(2) is independent of secondary cellular ROS production triggered by several ROS modulators regardless of cell phenotypes. These new findings suggest different mechanisms underpinning cytotoxicity and DNA damage induced by oxidative stress and a susceptible phenotype to oxidative injury associated with aggressive prostate cancer cells in vitro.  相似文献   

9.
The simultaneous localization of proteoglycan by light and electron microscopy was demonstrated by fixing epiphyseal cartilage in a glutaraldehyde toluidine blue O solution. Sections cut for light microscopy viewing and those cut for electron microscopy required no further staining, although, in the latter case, staining with uranyl acetate and lead improved the overall contrast. By this technique, electron-dense structures were seen concentrated about the cells which were actively synthesizing matrix, and these structures appeared to bind collagen fibrils. Similar structures were not seen in conventionally fixed tissue. They could also not be identified when the specimens were previously incubated with the proteoglycan-digesting enzyme, papain, prior to toluidine blue O fixation. The toluidine blue O fixation method, unlike conventional fixation and staining, retained proteoglycan in the pericellular areas of actively synthesizing cells and made it visible by light and electron microscopy. It appears that proteoglycans is both precipitated and stained by the presence of toluidine blue O during fixation.  相似文献   

10.
It was determined by means of light and electron microscopy that the granular blood cells of Pacific oysters could absorb basic dyes from dye-coated plastic beads injected into the mantles of oysters; in doing so, the granular blood cells became altered morphologically and behaviorally. In addition, it was observed that oysters could absorb the basic dye, toluidine blue O, in low concentration from sea water. It was shown that the absorption of toluidine blue O caused a shift in the blood cell levels of oysters, and it was suggested that this shift was occasioned by the absorption of toluidine blue O by granulocytes.  相似文献   

11.
Propan-2-ol did not leach dye from toluidine blue stained bacteria on membrane filters but ethanol did. The absorption spectra of toluidine blue stained cells of two Gram-positive and two Gram-negative organisms differed with the latter organisms exhibiting metachromasia. The results suggest that toluidine blue stains the cell envelope. Linear regression equations were derived for each of four organisms, Streptococcus cremoris, Lactobacillus bulgaricus, Pseudomonas fluorescens and Escherichia coli, relating absorbance at the peak of the absorption spectra and the mass of cells on the filters. With these equations it should be possible to determine mass of cells with an error between 3% and 7.5% depending on the organism. Since the regression equations are similar, the amount of toluidine blue retained per milligram of cells may be constant under standard conditions, irrespective of species.  相似文献   

12.
Escherichia coli cells were killed by visible light irradiation in the presence of the photosensitizing dye, toluidine blue. Two uvrB mutant strains of E. coli K-12 (AB1885 and N3-1) were much more sensitive than the isogenic uvrA and uvrC strains to treatment with toluidine blue plus light, suggesting that the uvrB+ gene product was involved in repair of DNA damage induced by the treatment. The uvrB+ gene cloned in a high- or low-copy-number plasmid was transformed into the uvrB strain (AB1885). Although all the transformants showed the same resistance as its wild-type strain (AB1157) to UV irradiation, they were as sensitive as AB1885 was to treatment with toluidine blue plus light. The two uvrB strains were more sensitive to sodium dodecyl sulfate than the other strains, suggesting that these strains had a defect in the cell surface. A sodium dodecyl sulfate-resistant revertant obtained from AB1885 was more resistant than AB1885 was to treatment with toluidine blue plus light. The two uvrB strains (AB1885 and N3-1) appear to have a defective gene (tentatively called dvl) different from uvrB. Its map position was around 7 min on the E. coli map.  相似文献   

13.
The ArcB/A two-component signal transduction system of Escherichia coli modulates the expression of numerous operons in response to redox conditions of growth. We demonstrate that the putative arcA and arcB genes of Mannheimia succiniciproducens MBEL55E, a capnophilic (CO2-loving) rumen bacterium, encode functional proteins that specify a two-component system. The Arc proteins of the two bacterial species sufficiently resemble each other that they can participate in heterologous transphosphorylation in vitro, and the arcA and arcB genes of M. succiniciproducens confer toluidine blue resistance to E. coli arcA and arcB mutants. However, neither the quinone analogs (ubiquinone 0 and menadione) nor the cytosolic effectors (d-lactate, acetate, and pyruvate) affect the net phosphorylation of M. succiniciproducens ArcB. Our results indicate that different types of signaling molecules and distinct modes of kinase regulation are used by the ArcB proteins of E. coli and M. succiniciproducens.  相似文献   

14.
Specific inhibitors of the production of reactive oxygen species (ROS) by the NADPH oxidases (Nox's) are potentially important therapeutic agents in the wide range of human diseases that are characterized by excessive ROS production. It has been proposed that VAS2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3- triazolo[4,5-d]pyrimidine), identified as an inhibitor of Nox2 by small-molecule screening, may serve as an example of such an agent. Here we show that VAS2870 inhibits ROS production in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle, previously identified with Nox4, and thereby abrogates O(2)-coupled redox regulation of the ryanodine receptor-Ca(2+) channel (RyR1). However, we also find that VAS2870 modifies directly identified cysteine thiols within RyR1. Mass spectrometric analysis of RyR1 exposed in situ to VAS2870 and of VAS2870-treated glutathione indicated that thiol modification is through alkylation by the benzyltriazolopyrimidine moiety of VAS2870. Thus, VAS2870 exerts significant off-target effects, and thiol alkylation by VAS2870 (and closely related Nox inhibitors) may in fact replicate some of the effects of ROS on cellular thiol redox status. In addition, we show that SR-localized Nox4 is inhibited by other thiol-alkylating agents, consistent with a causal role for cysteine modification in the inhibition of ROS production by VAS2870.  相似文献   

15.
Propan-2-ol did not leach dye from toluidine blue stained bacteria on membrane filters but ethanol did. The absorption spectra of toluidine blue stained cells of two Gram-positive and two Gram-negative organisms differed with the latter organisms exhibiting metachromasia. The results suggest that toluidine blue stains the cell envelope. Linear regression equations were derived for each of four organisms, Streptococcus cremoris, Lactobacillus bulgaricus, Pseudomonas fluorescens and Escherichia coli, relating absorbance at the peak of the absorption spectra and the mass of cells on the filters. With these equations it should be possible to determine mass of cells with an error between 3% and 7.5% depending on the organism. Since the regression equations are similar, the amount of toluidine blue retained per milligram of cells may be constant under standard conditions, irrespective of species.  相似文献   

16.
Nakamura, Hakobu (Konan University, Kobe, Japan). Gene-controlled resistance to acriflavine and other basic dyes in Escherichia coli. J. Bacteriol. 90:8-14. 1965.-The genetic determinant controlling the sensitivity of Escherichia coli K-12 W1895 to the basic dyes acriflavine, methylene blue, toluidine blue, crystal violet, methyl green, and pyronine B appears, from results of mating experiments, to be located between the marker governing the utilization of lactose and the origin of genetic transfer. The determinant controlling this resistance to basic dyes does not control resistance to acid dyes. After the introduction of the resistance gene into merozygotes, acriflavine resistance is not established immediately but develops slowly.  相似文献   

17.
Numerous studies have aimed to alleviate oxidative stress in a wide range of organisms by increasing superoxide dismutase (SOD) activity. However, experimental approaches have yielded contradictory evidence, and kinetics models have shown that increases in SOD activity may increase, decrease, or not change hydrogen peroxide (H2O2) production, depending on the balance of the various processes that produce and consume superoxide (O2-). In this study we tested whether administration of EUK-8, a synthetic mimetic of the SOD enzyme, can protect starving Escherichia coli cells against stasis-induced oxidative stress. Surprisingly, administration of EUK-8 to starving E. coli cells enhances the production of reactive oxygen species (ROS), resulting in a massive increase of oxidative damage and replicative death of the bacteria. Our results confirm that manipulation of ROS levels by increasing SOD activity does not necessarily result in a consequent decline of oxidative stress and can yield opposite results in a relatively simple model system such as starving E. coli cells.  相似文献   

18.
Altered redox signaling and regulation in cancer cells represent a chemical vulnerability that can be targeted by selective chemotherapeutic intervention. Here, we demonstrate that 3,7-diaminophenothiazinium-based redox cyclers (PRC) induce selective cancer cell apoptosis by NAD(P)H:quinone oxidoreductase (NQO1)-dependent bioreductive generation of cellular oxidative stress. Using PRC lead compounds including toluidine blue against human metastatic G361 melanoma cells, apoptosis occurred with phosphatidylserine externalization, loss of mitochondrial transmembrane potential, cytochrome c release, caspase-3 activation, and massive ROS production. Consistent with reductive activation and subsequent redox cycling as the mechanism of PRC cytotoxicity, coincubation with catalase achieved cell protection, whereas reductive antioxidants enhanced PRC cytotoxicity. Unexpectedly, human A375 melanoma cells were resistant to PRC-induced apoptosis, and PRC-sensitive G361 cells were protected by preincubation with the NQO1 inhibitor dicoumarol. Indeed, NQO1 specific enzymatic activity was 9-fold higher in G361 than in A375 cells. The critical role of NQO1 in PRC bioactivation and cytotoxicity was confirmed, when NQO1-transfected breast cancer cells (MCF7-DT15) stably overexpressing active NQO1 displayed strongly enhanced PRC sensitivity as compared to vector control-transfected cells with baseline NQO1 activity. Based on the known overexpression of NQO1 in various tumors these findings suggest the feasibility of developing PRC lead compounds into tumor-selective bioreductive chemotherapeutics.  相似文献   

19.
Although an excess of reactive oxygen species (ROS) can damage the vasculature, low concentrations of ROS mediate intracellular signal transduction pathways. We hypothesized that hydrogen peroxide plays a beneficial role in the vasculature by inhibiting endothelial exocytosis that would otherwise induce vascular inflammation and thrombosis. We now show that endogenous H(2)O(2) inhibits thrombin-induced exocytosis of granules from endothelial cells. H(2)O(2) regulates exocytosis by inhibiting N-ethylmaleimide sensitive factor (NSF), a protein that regulates membrane fusion events necessary for exocytosis. H(2)O(2) decreases the ability of NSF to hydrolyze adenosine triphosphate and to disassemble the soluble NSF attachment protein receptor complex. Mutation of NSF cysteine residue C264T eliminates the sensitivity of NSF to H(2)O(2), suggesting that this cysteine residue is a redox sensor for NSF. Increasing endogenous H(2)O(2) levels in mice decreases exocytosis and platelet rolling on venules in vivo. By inhibiting endothelial cell exocytosis, endogenous H(2)O(2) may protect the vasculature from inflammation and thrombosis.  相似文献   

20.
Mechanistic insights into Cr(VI)-induced carcinogenicity and possible implication of Cr(V) species formed by the redox reactions of chromium-bearing species have attracted interest. We have previously demonstrated that when human peripheral blood lymphocytes are exposed to the Cr(V) complexes, viz., sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate(V), Na[Cr(V)O(ehba)(2)] and sodium bis(2-hydroxy-2-methylbutyrato)oxochromate(V), Na[Cr(V)O(hmba)(2)], apoptosis and formation of reactive oxygen species (ROS) are observed. The molecular mechanisms involving cellular signaling pathways leading to apoptosis are addressed in the present study. Treatment of lymphocytes with Na[Cr(V)O(ehba)(2)] and K(2)Cr(2)O(7) leads to the activation of the Src-family protein tyrosine kinases namely, p56(lck), p59(fyn), and p56/53(lyn), which then activates caspase-3, both of which are under the partial influence of ROS. Inhibition of the Src-family tyrosine kinases activity by PP2 and of caspase-3 by Z-DEVD-FMK reverses apoptosis, thereby suggesting their importance. Antioxidants only partially reverse the apoptosis induced by Cr(VI/V), suggesting that pathways other than those induced by ROS cannot be ruled out. Although the complex, Na[Cr(V)O(ehba)(2)] is known to be relatively stable in aqueous solutions, previous studies have shown that the Cr(V) complex, Na[Cr(V)O(ehba)(2)] disproportionates to Cr(VI) and Cr(III) forms at pH 7.4 through complex mechanistic processes. Dynamics studies employing EPR data show that the Cr(V) state in Na[Cr(V)O(ehba)(2)] is relatively more stable in RPMI-1640 medium containing plasma. Formation of ROS during the reaction of redox partners with Na[Cr(V)O(ehba)(2)] is an early event and compares favorably in kinetic terms with the reported rate processes for disproportionation. This investigation presents evidence for the direct implication of Cr(V) in Cr(VI)-induced apoptosis of lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号