首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The spatial structure of spin-labeled angiotensin in aqueous solution wa investigated with the combined use of NMR, fluorescence spectroscopy and energy calculation including Monte-Carlo techniques. The calculated mean values of molecular parameters were compared with the experimental ones. The calculated and experimental mean values were regarded as statistically indistinguishable when the corresponding mean values occurred within the 95% confidence limit. The experimental parameters were shown to be adequately described by calculated conformers only with the assumption of the existence of dynamic equilibrium of conformers in solution. The mean values of statistical weights and their limits providing the agreement between the calculated and experimental data were determined. Two geometrically different forms of backbone structure for C-terminal hexapeptide in aqueous solution were revealed using the discussed approach; the N-terminal part of the molecule appeared to be much more conformationally labile. The model of molecule spatial structure is consistent with available literature data upon angiotensin titration experiments, its complexing with heavy metal ions etc.  相似文献   

4.
The number of structural parameters were determined for spin-labelled angiotensin in aqueous solution with the use of fluorescence spectroscopy and 1H NMR relaxation induced by the spin label. At the same time all measured parameters were estimated theoretically by means of energy calculations and Monte-Carlo techniques. The matching procedure for experimental and computational data allows one to suggest a dynamic equilibrium between conformers of the molecule in aqueous solution and to estimate the values of their weights.  相似文献   

5.
A hierarchical procedure, using a "bottom-up" strategy and combining (i). a probabilistic approach for estimating all possible starting structures, (ii). restrained molecular mechanics algorithms for preliminary selection of all energetically preferred conformers, as well as (iii). quantum chemical computations for refining their geometry, was used to study the structural properties of the HIV-MN neutralizing epitope in terms of NMR spectroscopy data. As a result, only one of initial structures matching the experimental and theoretical data was found to be well-ground for implementing the function of immunoreactive conformation of the virus immunogenic crown. The geometric parameters of this structure in water solution were shown to correspond to a double beta-turn conformation similar to that revealed in crystal for synthetic molecules imitating the central region of the HIV-MN V3 loop. The following conclusion was drawn from the comparative analysis of simulated structure with the one computed previously: the HIV-MN immunogenic tip has some inherent conformational flexibility that manifests at the alterations of hexapeptide environment and leads to the structural transitions changing the local conformation of the stretch of interest but retaining its spatial main chain fold. As a matter of record, the high resolution 3D structure model for the HIV-MN principal neutralization site was constructed, and its geometric parameters were compared with the corresponding characteristics of conformers derived earlier for describing the conformational features of immunogenic tip of gp120 from Thailand HIV-1 isolate.  相似文献   

6.
Oh KI  Lee KK  Park EK  Yoo DG  Hwang GS  Cho M 《Chirality》2010,22(Z1):E186-E201
Despite that a number of experimental and theoretical investigations have been carried out to determine the structure of trialanine in water, the reported populations of polyproline II (PPII) and β-strand conformers vary and were found to be dependent on which spectroscopic method was used. Such discrepancies are due to limitations of different spectroscopic methods used. Here, the temperature- and pH-dependent circular dichroism (CD) and NMR experiments have been carried out to develop a self-consistent singular value decomposition procedure. The temperature-dependent CD spectra indicate the presence of two conformers, but due to the two peptide bonds in a trialanine, one should take into consideration of four different conformers to fully interpret the NMR results. From the pH-dependent NMR coupling constant measurements, the conformation of zwitterionic trialanine is little different from that of cationic one. The strong pH dependency of CD spectrum is likely due to charge transfer transitions between carboxylate and nearby peptide groups or internal field effects not to pH-dependent conformational change. To simultaneously analyze the temperature-dependent CD and NMR data, a self-consistent procedure was used to newly determine the reference NMR coupling constants required to estimate one of the peptide dihedral angles. From the estimated enthalpy and entropy changes associated with the transition from enthalpically favorable PPII conformer to entropically favorable β-strand conformer, the relative populations of the four possible conformers of trialanine were determined and compared with the previous experimental findings. We anticipate that the present experimental results and interpretation procedure would be of use in determining the solution structures of small oligopeptides in the future.  相似文献   

7.
The spectroscopic properties (uv, CD, nmr) of histidine, glycylhistidine, histidylglycine, glycylhistidylglycine have been investigated in water and methanol in the temperature range 200–320 K in order to obtain information about their conformational equilibria. This analysis has been carried out for the different ionic forms of the compounds, in order to evaluate the influence of the ionization state of the carboxyl, histidyl, and amino groups on the rotamer distribution of the histidyl side chain (as evaluated from proton nmr analysis) and on the overall molecule (as judged from CD spectra). On the basis of certain approximations and from the temperature dependence of the proton nmr resonance, the thermodynamic parameters (ΔH° and ΔS°) characterizing the conformational equilibrium of the hystidyl side chain have been evaluated for the different structures and ionization states. Relatively large entropy differences between the rotamers are obtained in some cases. The data of the sidechain rotamer population, as determined by nmr, have been analytically correlated with the CD data, and in the case of hystidine and histidylglycine in basic solution, first-approximation values for the ellipticity of the single conformers have been evaluated. Finally, in the example of glycylhistidine and histidylglycine in basic solution, it is shown how the data obtained from the different experimental approaches (nmr and CD), as well as from theoretical energy calculations, converge to characterize the most stable conformation in solution.  相似文献   

8.
NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.  相似文献   

9.
Abstract

A hierarchical procedure, using a “bottom-up” strategy and combining (i) a probabilistic approach for estimating all possible starting structures, (ii) restrained molecular mechanics algorithms for preliminary selection of all energetically preferred conformers, as well as (iii) quantum chemical computations for refining their geometry, was used to study the structural properties of the HIV-MN neutralizing epitope in terms of NMR spectroscopy data. As a result, only one of initial structures matching the experimental and theoretical data was found to be well-ground for implementing the function of immunoreactive conformation of the virus immunogenic crown. The geometric parameters of this structure in water solution were shown to correspond to a double β-turn conformation similar to that revealed in crystal for synthetic molecules imitating the central region of the HIV-MN V3 loop. The following conclusion was drawn from the comparative analysis of simulated structure with the one computed previously: the HIV-MN immunogenic tip has some inherent conformational flexibility that manifests at the alterations of hexapeptide environment and leads to the structural transitions changing the local conformation of the stretch of interest but retaining its spatial main chain fold. As a matter of record, the high resolution 3D structure model for the HIV-MN principal neutralization site was constructed, and its geometric parameters were compared with the corresponding characteristics of conformers derived earlier for describing the conformational features of immunogenic tip of gp120 from Thailand HIV-1 isolate.

The results are discussed in the light of literature data on HIV-1 neutralizing epitope structure.  相似文献   

10.
The conformation of the tetrapeptide N-Acetyl-Asp7-Glu8-Lys9-Ser10-NH2, a fragment of the type I collagen alpha-1 chain N-telopeptide, has been studied by 1H and 13C NMR and circular dichroism spectroscopy. The spectroscopic evidence, based on two-dimensional, phase-sensitive NMR techniques such as COSY, ROESY, proton-carbon shift correlation and selective COLOC, indicates a strong dependence of the conformation on the experimental conditions. In CD3OH/H2O (60/40) at ca. neutral pH the tetrapeptide forms a beta-turn, stabilized by a hydrogen bond between NH(S10) and CO(D7) and a strong salt-bridge between COO-(E8) and NH3+(K9). The beta-turn is type I and appears to coexist with a non-hydrogen-bonded structure. The coexistence of these two conformers is proven by proton NMR data such as NH-NH ROEs, reduced NH-H alpha (E8) coupling constant, NH(E8) low-field shift and the temperature coefficient of NH(S10), whereas the conclusion regarding the salt-bridge is based on 13C results. In the same solvent, at a pH below the pKa of the carboxyl groups, no evidence for a conformation other than extended can be found. In aqueous solution at approximately neutral pH, evidence for the E8-K9 charge interaction is observed, but not for a hydrogen bond anywhere in the molecule.  相似文献   

11.
Conformational preferences of a group of hexapeptides containing two dehydroamino acid residues in Positions 2 and 5 in peptide chain were investigated by means of spectroscopic methods (NMR and CD) and theoretical calculations. In the case of dimethylsulfoxide (DMSO) solution, only peptide with free N-termini adopted rigid 3(10)-helical conformation, for the rest of examined peptides extended and "zig-zag" conformers were predominant. CD measurements showed that only in chloroform solution the conformational freedom of investigated peptides was restricted.  相似文献   

12.
Experiment and computer simulation are two complementary tools to understand the dynamics and behavior of biopolymers in solution. One particular area of interest is the ensemble of conformations populated by a particular molecule in solution. For example, what fraction of a protein sample exists in its folded conformation? How often does a particular peptide form an alpha helix versus a beta hairpin? To address these questions, it is important to determine the sensitivity of a particular experiment to changes in the distribution of molecular conformations. Consequently, a general analytic formalism is proposed to determine the sensitivity of a spectroscopic observable to the underlying distribution of conformations. A particular strength of the approach is that it provides an expression for a weighted average across conformational substates that is independent of the averaging function used. The formalism is described and applied to experimental and simulated nuclear Overhauser enhancement (NOE) and 3 J-coupling data on peptides in solution.  相似文献   

13.
Bioactive peptides of natural origin have, in general, short linear sequences, and are characterized by a large conformational flexibility. It is very difficult to study their conformation in solution since they exist, almost invariably, as a complex mixture of numerous conformers, most of which are extended. The so-called bioactive conformation may be one of them, although the solvents used in solution studies often have properties drastically different from those of the biological system in which the peptide acts. There is, however, no simple way of identifying the bioactive conformation amid the many existing conformers. It is possible to approach a solution to this problem using two distinct strategies: (a) Limiting the conformational freedom of the peptide, e.g., by increasing the viscosity of the solution and decreasing the temperature, in the assumption that the bioactive conformation is, even slightly, more stable than the others. (b) Trying to mimic in solution the physicochemical features of the more reliable receptor models. These two approaches will be illustrated with examples taken mainly from opioid peptides.  相似文献   

14.
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.  相似文献   

15.
Biologically active cyclic tetrapeptides, usually found among fungi metabolites, exhibit phytotoxic or cytostatic activities that are likely to be governed by specific conformations adopted in solution. For conformational studies and drug design, there is a strong interest in using fast and reliable methods to determine correctly the conformational population of cyclotetrapeptides. We show here that standard molecular mechanics computational approach gives satisfactory results. The method was validated step by step by experimental data either obtained after synthesis and NMR analysis, or found in the literature. The cyclo(Gly)(4), cyclo(Ala)(4), cyclo(Sar)(4), and cyclo(SarGly)(2) peptides were used to evaluate the prediction of the peptide backbone conformation, and the detailed conformational analysis of tentoxin, a natural phytotoxic cyclotetrapeptide in which N-alkylated peptide bonds alternate with regular secondary ones, was used to validate the computation of conformers proportions. From the knowledge of an initial cyclic primary structure and of the D or L configuration of the amino acids, we show that it is possible to determine the exact orientation of carbonyl groups and to predict the nature of conformers present in solution. The proportion of each conformer can be inferred from a statistical thermodynamics approach by using the potential energy values of each conformer, computed by molecular mechanics methods with the TRIPOS force field, which allowed us to account for the solvent. The solvent contribution was processed by two different methods according to the nature of the interactions: whether through the dielectric constant introduced in the electrostatic potential, when interaction with solute molecules are weak or negligible, or through the computation of free energy of solvation using the algorithm SILVERWARE for solvents explicitly interacting with the solute. When applied to tentoxin, this conformational analysis yielded results in very good agreement with the experimental data reported by Pinet et al. (Biopolymers, 1995, Vol. 36, pp. 135-152), on both the nature of existing conformers and their relative proportions, whatever the nature of the considered solvent.  相似文献   

16.
Refining the geometric parameters for the ensemble of conformers, derived earlier in terms of NMR-spectroscopy data for the immunogenic tip of Thailand HIV-1 isolate, was carried out by quantum chemical methods. As a result, (i) the energy characteristics of initial structures were significantly improved, (ii) their relative locations on the scale of formation heats were determined, and (iii) the energy barriers between conformers under study were computed. On the basis of all data obtained, the high resolution 3D structure model, describing the set of stable conformers and containing the biologically active conformation, was proposed for neutralizing epitope of Thailand HIV-1 isolate. The following major conclusions were made based on the analysis of simulated conformations: i) the Gly-Pro-Gly-Gln-Val-Phe stretch forming the immunogenic crown of Thailand HIV-1 isolate exhibits the properties characteristic for metastable oligopeptide that constitutes in solution the dominant structure with other conformations admissible; (ii) three structures out of five NMR-based starting models form the cluster of conformers which adequately describes general conformational features of this functionally important site of gp120; (iii) two structures residing in this cluster are found to be well-ground for implementing the function of immunoreactive conformation of the stretch of interest; (iv) in spite of this observation, the "global" structure which gives rise to inverse gamma-turn in the central Gly-Pro-Gly crest of Thailand HIV-1 gp120 is proposed to be the most probable conformation responsible for the formation of viral antigen-antibody complex in particular case under study.  相似文献   

17.
Results of an extensive theoretical conformational analysis of the opiate pentapeptide Met5-enkephalin are compared to spectroscopic data. The comparison enables us to propose a consistent model for the conformational state of Met5-enkephalin in solution. The empirical energy calculations suggest that the molecule exists in aqueous solution in a small number of folded and extended families of conformers. The predominance of βII′-turns at the level of the glycine residues at positions 2 and 3 is the most significant characteristic of folded conformers. A highly populated conformer of Met5-enkephalin is shown to possess structural features in common with the very potent narcotic etonitazene.  相似文献   

18.
A screened electrostatic potential model of hydration, recently proposed, is used to simulate the statistical behaviour of enkephalin and angiotensin II in solution. Curves of the end-to-end distances as well as calculated values of n.m.r. coupling constants are given and compared with experiments and results obtained from other theoretical studies. The satisfactory agreement between calculated values and the corresponding experimental data indicates that the present theoretical approach is a simple and efficient way to take into account solvent effects on the conformation of biological molecules.  相似文献   

19.
20.
Abstract

Refining the geometric parameters for the ensemble of conformers, derived earlier in terms of NMR-spectroscopy data for the immunogenic tip of Thailand HIV-1 isolate, was carried out by quantum chemical methods. As a result, (i) the energy characteristics of initial structures were significanly improved, (ii) their relative locations on the scale of formation heats were determined, and (iii) the energy barriers between conformers under study were computed. On the basis of all data obtained, the high resotion 3D structure model, describing the set of stable conformers and containing the biologically active conformation, was proposed for neutralizing epitope of Thailand HIV-1 isolate. The following major conclusions were made based on the analysis of simulated conformations: i) the Gly-Pro-Gly-Gln-Val-Phe stretch forming the immunogenic crown of Thailand HIV-1 isolate exhibits the properties characteristic for metastable oligopeptide that constitutes in solution the dominant structure with other conformations admissible; (ii) three structures out of five NMR-based starting models form the cluster of conformers which adequately describes general conformational features of this functionally important site of gp120; (iii) two structures residing in this cluster are found to be well-ground for implementing the function of immunoreactive conformation of the stretch of interest; (iv) in spite of this observation, the “global” structure which gives rise to inverse γ-turn in the central Gly-Pro-Gly crest of Thailand HIV-1 gp120 is proposed to be the most probable conformation responsible for the formation of viral antigen-antibody complex in particular case under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号