首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Immunocytochemical techniques have been used to study neuropeptide Y (NPY) distribution in the human visual cortex (Brodman's areas 17, 18 and 19) NYP cell bodies belong mostly to inhibitory (multipolar and bitufted) but also to excitatory (bipolar and some pyramidal) neuronal types. Their distribution is similar in the three cortical areas studied: 20 to 40% of the NPY perikarya are located in the cortical gray matter, mostly in the deep layers, while the remaining 60 to 80% are located in the underlying white matter. Immunoreactive NPY processes form a rich network of intersecting fibers throughout the entire visual cortex. A superficial plexus (layers I and II) and a deep plexus (deep layer V and layer VI) of NPY fibers are present in areas 17, 18 and 19. In area 17, an additional well developed plexus is present in layers IVb and IVc. These plexuses receive branches from long parallel fibers arising from deep cortical layers or underlying white matter and terminating in superficial layers. Local or extrinsic NPY terminals wind around vessels in the cortex as well as in the white matter, and either penetrate them or form clusters of club endings on their walls. Our results suggest a role for NPY in human visual circuitry and in cortical blood flow regulation.  相似文献   

2.
Sonic hedgehog (Shh) signaling regulates cell differentiation and proliferation during brain development. However, the role of Shh in neurogenesis during late gestation (embryonic day 13.5–18.5) remains unclear. Herein, we used a genetic approach and in utero electroporation to investigate the role of mouse Shh and patched homolog 1 (Ptch1), the putative receptor for Shh. Proliferating cortical intermediate (basal) progenitor cells (IPCs) were severely reduced in Shh mutant mice, suggesting that endogenous Shh signaling could play an essential role in cortical IPC development. During cortical neurogenesis, strong upregulation of Shh signaling enhanced the transition from ventricular zone (VZ) progenitors to ventralized IPCs, while low levels of signaling enhanced the generation and proliferation of cortical IPCs in the subventricular zone. The effects of Shh upregulation in this study were consistent with a phenotype of conditional loss of function of Ptch1, and the phenotype of a hypomorphic allele of Ptch1, respectively. These data indicated that endogenous Ptch1 mediates the broad effects of Shh on the transition from VZ progenitors to IPCs and activation of proliferation of the IPCs in the cortex during late gestational stages.  相似文献   

3.
Kayser MS  Nolt MJ  Dalva MB 《Neuron》2008,60(1):56-69
T-brain gene-2 (Tbr2) is specifically expressed in the intermediate (basal) progenitor cells (IPCs) of the developing cerebral cortex; however, its function in this biological context has so far been overlooked due to the early lethality of Tbr2 mutant embryos. Conditional ablation of Tbr2 in the developing forebrain resulted in the loss of IPCs and their differentiated progeny in mutant cortex. Intriguingly, early loss of IPCs led to a decrease in cortical surface expansion and thickness with a neuronal reduction observed in all cortical layers. These findings suggest that IPC progeny contribute to the correct morphogenesis of each cortical layer. Our observations were confirmed by tracing Tbr2+ IPC cell fate using Tbr2::GFP transgenic mice. Finally, we demonstrated that misexpression of Tbr2 is sufficient to induce IPC identity in ventricular radial glial cells (RGCs). Together, these findings identify Tbr2 as a critical factor for the specification of IPCs during corticogenesis.  相似文献   

4.
Summary Inverted pyramidal neurons are very abundant in the cerebral cortex of the adult reeler mutant mouse. Two types of inverted pyramid are found in rapid Golgi impregnations. In the first type the axon starts from the base of the cell body and bends towards the white matter. In the second type, which is more common, the axon emerges from the apical dendritic tree and descends directly towards the white matter.Despite its abnormal topography, the site of origin of the axon in pyramids of the second type displays a normal differentiation, when analysed with the electron microscopic Golgi technique, suggesting that the ectopic initial axon segment is able to fulfil its normal functions.  相似文献   

5.
During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57(KIP2), an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57(KIP2) regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27(KIP1) controlled IPC proliferation exclusively. Furthermore, p57(KIP2) deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27(KIP1) increased IPC proliferation at E16.5. Consequently, loss of p57(KIP2) increased primarily layer 5-6 neuron production, whereas loss of p27(KIP1) increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57(KIP2) and p27(KIP1) control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation.  相似文献   

6.
The response of cortical neurons to a sensory stimulus is shaped by the network in which they are embedded. Here we establish a role of parvalbumin (PV)-expressing cells, a large class of inhibitory neurons that target the soma and perisomatic compartments of pyramidal cells, in controlling cortical responses. By bidirectionally manipulating PV cell activity in visual cortex we show that these neurons strongly modulate layer 2/3 pyramidal cell spiking responses to visual stimuli while only modestly affecting their tuning properties. PV cells' impact on pyramidal cells is captured by a linear transformation, both additive and multiplicative, with a threshold. These results indicate that PV cells are ideally suited to modulate cortical gain and establish a causal relationship between a select neuron type and specific computations performed by the cortex during sensory processing.  相似文献   

7.
This work provides direct evidence that sustained tensile stress exists in white matter of the mature mouse brain. This finding has important implications for the mechanisms of brain development, as tension in neural axons has been hypothesized to drive cortical folding in the human brain. In addition, knowledge of residual stress is required to fully understand the mechanisms behind traumatic brain injury and changes in mechanical properties due to aging and disease. To estimate residual stress in the brain, we performed serial dissection experiments on 500-mum thick coronal slices from fresh adult mouse brains and developed finite element models for these experiments. Radial cuts were made either into cortical gray matter, or through the cortex and the underlying white matter tract composed of parallel neural axons. Cuts into cortical gray matter did not open, but cuts through both layers consistently opened at the point where the cut crossed the white matter. We infer that the cerebral white matter is under considerable tension in the circumferential direction in the coronal cerebral plane, parallel to most of the neural fibers, while the cerebral cortical gray matter is in compression. The models show that the observed deformation after cutting can be caused by more growth in the gray matter than in the white matter, with the estimated tensile stress in the white matter being on the order of 100–1,000 Pa.  相似文献   

8.
9.
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole‐cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250‐ms interval) of five depolarization‐pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long‐term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2‐bis(2‐aminophenoxy)‐ethane‐N, N,N′,N′‐tetraacetic acid or 100 μM CaMKII(281–301) into the recording neurons prevented HFA‐induced long‐term enhancement of neuronal excitability. The infusion of 40 μM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA‐induced long‐term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium‐dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

10.
陈钟芳  舒加 《生理学报》1993,45(2):103-110
本文对移植的5-HT神经元从蛛网膜下腔跨软脊膜迁移进入脊髓作了初步研究。将含有5-HT细胞的胚胎中缝核组织小块或神经细胞悬浮液作为移植物,以5-HT免疫组织化学方法跟踪移植细胞,结果如下:(1)在低胸水平横切脊髓,10d后,横断脊髓内的5-HT纤维消失。(2)横切脊髓(方法同上)后,立即将中缝核组织小块移植在胸腰段脊髓的蛛网膜下腔,一月后.在横断脊髓内出现5-HT阳性神经元和纤维。5-HT纤维能在灰白质内延伸。(3)脊髓横断后,若以中缝核的细胞悬浮液代替组织小块,作上述移植,则在移植区附近的灰质内出现大量的5-HT阳性神经元。这些神经元在灰质内的分布范围与神经细胞悬浮液在蛛网膜下腔的移植范围相一致。迁入神经元能在灰质内重新形成5-HT阳性纤维网。(4)经上述移植后,灰质内出现的5-HT阳性纤维随远离细胞体而变得稀疏。白质内的5-HT阳性纤维远比灰质内稀少。本实验结果表明:移植在脊髓蛛网膜下腔的脑干5-HT细胞能跨软脊膜迁移进入脊髓。  相似文献   

11.
Subdural cortical stimulation (SuCS) is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5) that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI) and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.  相似文献   

12.
Neurotrophins such as nerve growth factor (NGF) are critical for the maintenance of CNS neurons. We determined the expression of NGF and the neurotrophin receptors p75 and trk in the somatosensory and motor cortices of mature rats with immuno-histochemical techniques. Sections of mature rat cortex were processed immunohisto-chemically with primary antibodies directed against NGF, p75, or trk. The distribution of immunoreactive elements was examined, and stereological techniques were used to determine the density and size of immunoreactive cell bodies. Some sections processed for trk immunoreactivity were examined with an electron microscope.

From the size and morphology of the labeled cells, it appeared that only neurons in the gray matter were NGF-positive. NGF was detected in one-third of the neurons in layers II-III, V, and VI of both somatosensory cortex and motor cortex; however, fewer than 1 in 12 of the layer IV neurons was NGF-positive. With the notable exception of layer V, few cell bodies (2–10% of the total population) were p75– or trk-immunoreactive. Layer Vb was replete with receptor-positive cell bodies; more than one-third of the layer Vb neurons were p75– or trk-positive. All labeled cells appeared to be pyramidal neurons. The distribution of p75 labeling with the two anti-p75 antibodies was indistinguishable. In addition, the neuropil in the supragranular laminae was p75– or trk-positive. Electron microscopy showed that trk immunoreactivity was also expressed by dendrites. Only rarely were immunoreactive axons detected.

In summary, NGF is expressed by cortical neurons throughout cortex, and neurotrophin receptors are widely produced by postsynaptic targets. Thus, NGF appears to participate in an intracortical autoregulatory system. The strong expression of neurotrophin receptors by pyramidal neurons in layer Vb (the origin of brainstem and spinal cord projections) suggests that the neurotrophins are especially critical for the regulation of corticofugal projection systems.  相似文献   

13.
The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.  相似文献   

14.
Epileptic temporal and parietal cortices, removed from 6 patients with therapy-resistant (intractable) partial epilepsy (TRPE) during neurosurgery, were studied. Neurons (40–50 in each slice) in laminae I–VI and white matter were injected with Lucifer Yellow (LY). Samples were examined in a confocal laser scanning microscope (BioRad [Richmond, CA] MRC 600), and individual cells were scanned at 0.1–2 μm incremental levels. 2D maximal linear projection was used for overview. Frames (50–60) of scanned neurons were transformed into 3D volumes, using VoxelView software on a Silicone Graphics workstation, and rotated. All samples contained pyramidal neurons with duplicated apical dendrites, additional basal dendrites, or were misplaced in a horizontal position in the white matter. Rarely were such cells observed in normal cases. The relation between the observations and the disease is discussed. The attempt to simultaneously apply immunofluorescence was successful concerning synaptic vesicle antigens. This approach will be used for a detailed study of the synaptology of this disease.  相似文献   

15.
16.
Intracerebral hemorrhage (ICH) is a devastating stroke sub-type with high mortality and morbidity. ICH frequently occurs in subcortical white matter generating hematomas that contain high heme iron levels. In this study, we examined the consequences of iron-induced oxidation (1-100 microM Fe2+ for 30 min. or 50 microM Fe2+ for 1-120 min.) on the activities of two oxidatively sensitive enzymes, creatine kinase (CK) and glutamine synthetase (GS), and on an oxidative stress marker, protein carbonyl formation, in porcine cerebral cortical white and gray matter. In vitro iron oxidation produced time and concentration dependent decreases in both CK [maximum decreases of 49.3+/-1.2% and 44.3+/-4.1% (average +/- SEM, N=3) for white and gray matter, respectively] and GS activities (maximum decreases of 16.9+/-1.7% and 13.2+/-1.0% for white and gray matter, respectively) and increases in protein carbonyl formation. Interestingly, protein carbonyl concentrations were significantly greater (p<0.05) in white vs. gray matter at 100 microM iron (30 min.) and 50 microM iron (120 min.). Additionally, CK and GS activities were lower for white versus gray matter at several time points and iron concentrations. It is our hypothesis that iron induced oxidative stress contributes to the pathogenesis of perihematomal brain injury following ICH.  相似文献   

17.
18.
The phenotypes of the behavioral variant of frontotemporal dementia and the corticobasal syndrome present considerable clinical and anatomical overlap. The respective patterns of white matter damage in these syndromes have not been directly contrasted. Beyond cortical involvement, damage to white matter pathways may critically contribute to both common and specific symptoms in both conditions. Here we assessed patients with the behavioral variant of frontotemporal dementia and corticobasal syndrome with whole-brain diffusion tensor imaging to identify the white matter networks underlying these pathologies. Twenty patients with the behavioral variant of frontotemporal dementia, 19 with corticobasal syndrome, and 15 healthy controls were enrolled in the study. Differences in tract integrity between (i) patients and controls, and (ii) patients with the corticobasal syndrome and the behavioral variant of frontotemporal dementia were assessed with whole brain tract-based spatial statistics and analyses of regions of interest. Behavioral variant of frontotemporal dementia and the corticobasal syndrome shared a pattern of bilaterally decreased white matter integrity in the anterior commissure, genu and body of the corpus callosum, corona radiata and in the long intrahemispheric association pathways. Patients with the behavioral variant of frontotemporal dementia showed greater damage to the uncinate fasciculus, genu of corpus callosum and forceps minor. In contrast, corticobasal syndrome patients had greater damage to the midbody of the corpus callosum and perirolandic corona radiata. Whereas several compact white matter pathways were damaged in both the behavioral variant of frontotemporal dementia and corticobasal syndrome, the distribution and degree of white matter damage differed between them. These findings concur with the distinctive clinical manifestations of these conditions and may improve the in vivo neuroanatomical and diagnostic characterization of these disorders.  相似文献   

19.
Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD.  相似文献   

20.
Immunohistochemical and biochemical studies were performed on the brains of adult female and male rats using a specific antibody against bovine adrenocortical cytochrome P-450scc. The results showed that in both male and female rats, the myelinated regions of the white matter are selectively immunostained throughout the brain and that even in rats pretreated with colchicine, there is never positive staining of neuronal cell bodies and their dendrites in any brain region. Western immunoblotting with the P-450scc antibody and enzymatic assays revealed that P-450scc and cholesterol side-chain cleavage activity were present in a homogenate derived from the cortical white matter, but not detectable in that from the cerebral cortex. Furthermore, quantitation of the P-450scc protein in the immunoblots indicated that the concentration of P-450scc in the cortical white matter of both female and male rat brains is approx. 3-4 pmol per mg tissue protein. Thus it could be concluded that in the adult rat brain, P-450scc and cholesterol side-chain cleavage activity are selectively localized only in the myelinated region of the white matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号