首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Context: A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury.

Objective: To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death.

Methods: Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20?µg/mL, 2 purified from AL subjects’ urine, 1 from human recombinant LC [AL-09])?±?NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC?±?NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC?±?NL to follow changes in secondary structure and protein thermal stability.

Results: LC caused impaired dilation to acetylcholine that was restored by NL (control – 94.0?±?1.8%, LC – 65.0?±?7.1%, LC?+?NL – 95.3?±?1.8%, p?≤?0.001 LC versus control or LC?+?NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death.

Conclusions: LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.  相似文献   

2.
Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.  相似文献   

3.
The minor allele of rs11136000 within CLU is strongly associated with reduced Alzheimer's disease (AD) risk. The mechanism underlying this association is unclear. Here, we report that CLU1 and CLU2 are the two primary CLU isoforms in human brain; CLU1 and CLU2 share exons 2-9 but differ in exon 1 and proximal promoters. The expression of both CLU1 and CLU2 was increased in individuals with significant AD neuropathology. However, only CLU1 was associated with the rs11136000 genotype, with the minor "protective" rs11136000T allele being associated with increased CLU1 expression. Since CLU1 and CLU2 are predicted to encode intracellular and secreted proteins, respectively, we compared their expression; for both CLU1 and CLU2 transfected cells, clusterin is present in the secretory pathway, accumulates in the extracellular media, and is similar in size to clusterin in human brain. Overall, we interpret these results as indicating that the AD-protective minor rs11136000T allele is associated with increased CLU1 expression. Since CLU1 and CLU2 appear to produce similar proteins and are increased in AD, the AD-protection afforded by the rs11136000T allele may reflect increased soluble clusterin throughout life.  相似文献   

4.
The glycoprotein clusterin (CLU), has two known isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is pro-apoptotic, while a secretory form (sCLU) is pro-survival. Both forms are implicated in various cell functions, including DNA repair, cell cycle regulation, and apoptotic cell death. CLU expression has been associated with tumorigenesis and the progression of various malignancies. In response to DNA damage, cell survival can be enhanced by activation of DNA repair mechanisms, while simultaneously stimulating energy-expensive cell cycle checkpoints that delay the cell cycle progression to allow more time for DNA repair. This review summarizes our current understanding of the role of clusterin in DNA repair, apoptosis, and cell cycle control and the relevance.  相似文献   

5.
6.
Florian M  Lu Y  Angle M  Magder S 《Steroids》2004,69(10):637-645
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation.  相似文献   

7.
Eppin (SPINLW1; serine peptidase inhibitor-like with Kunitz and WAP domains 1 (eppin); epididymal protease inhibitor) coats the surface of human ejaculate spermatozoa and originates from Sertoli and epididymal epithelial cells. In this study, we have isolated native eppin from ejaculate supernatants (seminal plasma) and washed ejaculate spermatozoa using column chromatography and two-dimensional SDS-PAGE, and identified by mass spectrometry and Western blots an eppin protein complex (EPC) containing lactotransferrin (LTF; also known as lactoferrin), clusterin (CLU), and semenogelin (SEMG1). To confirm the association of eppin with LTF, CLU, and SEMG1, antibodies to CLU and LTF were used to immunoprecipitate CLU and LTF from human sperm lysates. In both cases identical results were obtained, namely, the immunoprecipitate of the EPC. Additionally, we localized eppin, LTF, and CLU in human Sertoli cells and on human testicular and ejaculate spermatozoa, implying that the EPC is present on spermatozoa from the time they leave the seminiferous tubule. On ejaculate spermatozoa eppin, LTF, and CLU colocalize on the tail. The identification of the EPC components suggests that LTF, CLU, and/or eppin receptors may function as sperm plasma membrane receptors for the EPC, implicating the complex as a central player in a network of protein-protein interactions on the human sperm surface. The EPC may provide a surface network with microbicidal properties that protects spermatozoa as well as regulates the sperm's transition to a motile, capacitated sperm.  相似文献   

8.
Clusterin (CLU), a glycoprotein, is involved in apoptosis, producing two alternatively spliced isoforms in various cell types. The pro-apoptotic CLU appears to be a nuclear isoform (nuclear clusterin; nCLU), and the secretory CLU (sCLU) is thought to be anti-apoptotic. The detailed molecular mechanism of nCLU as a pro-apoptotic molecule has not yet been clear. In the current study, overexpressed nCLU induced apoptosis in human kidney cells. Biochemical studies revealed that nCLU sequestered Bcl-XL via a putative BH3 motif in the C-terminal coiled coil (CC2) domain, releasing Bax, and promoted apoptosis accompanied by activation of caspase-3 and cytochrome c release. These results suggest a novel mechanism of apoptosis mediated by nCLU as a pro-apoptotic molecule.  相似文献   

9.
10.
The secreted clusterin/apolipoprotein J (CLU) protein form is a ubiquitously expressed heterodimeric glycoprotein which is differentially regulated in many severe physiological disturbance states including cell death, ageing, cancer progression, and various neurological diseases. Despite extensive efforts CLU function remains an enigma, the main cause being the intriguingly distinct and usually opposed functions in various cell types and tissues. In the current report we investigated the effects of CLU on cellular growth and survival in three human osteosarcoma (OS) cell lines, namely KH OS, Sa OS, and U-2 OS that express very low, moderate, and high endogenous steady-state CLU amounts, respectively. We found that exposure of these established OS cell lines or primary OS cells to genotoxic stress results in CLU gene induction at distinct levels that correlate negatively to CLU endogenous amounts. Following CLU-forced overexpression by means of an artificial transgene, we found that although extracellular CLU inhibits cell death in all three OS cell lines, intracellular CLU has different effects on cellular proliferation and survival in these cell lines. Transgenic KH OS cell lines adapted to moderate intracellular CLU levels were growth-retarded and became resistant to genotoxic and oxidative stress. In contrast, transgenic Sa OS and U2 OS cell lines adapted to high intracellular CLU amounts were sensitive to genotoxic and oxidative stress. In these two cell lines, the proapoptotic CLU function could be rescued by caspase inhibition. To monitor the immediate effects of heterologous CLU overexpression prior to cell adaptation, we performed transient transfections in all three OS cell lines. We found that induction of high intracellular CLU amounts increases spontaneous apoptosis in KH OS cells and reduces DNA synthesis in all three cell lines assayed. On the basis of these novel findings we propose that although extracellular CLU as well as intracellular CLU at low/moderate levels is cytoprotective, CLU may become highly cytostatic and/or cytotoxic if it accumulates intracellularly in high amounts either by direct synthesis or by uptake from the extracellular milieu.  相似文献   

11.
《FEBS letters》2014,588(24):4730-4739
Secretory clusterin (sCLU), an anti-apoptotic protein, is overexpressed in many tumors and enhances tumorigenesis and chemo-resistance. However, the regulation mechanism controlling the sCLU maturation process or activity remains undetermined. In this study, we found PACAP as a negative regulator of CLU. Overexpression of the PACAP gene in cervical cancer cell lines lacking PACAP expression significantly inhibited cell growth and induced apoptosis. We further demonstrated that interaction of PACAP with CLU significantly downregulated CLU expression and secretion, inhibited the Akt–Raf–ERK pathway, and suppressed the growth of human tumor xenografts in nude mice. This novel inhibitory function of PACAP may be applicable for developing novel molecular therapies for tumors with increased sCLU expression.  相似文献   

12.
Resistance to chemotherapy is a key factor in the inefficacy of various forms of treatments for cancer. In the present study, chemo-resistant proteins, including glucose-regulated protein 78 (GRP78)/clusterin (CLU) targeted 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes, were developed as a delivery system for co-delivery of camptothecin (CPT) and GRP78 siRNA/CLU siRNA. Their drug/gene co-deliveries were quantitatively assessed in cancer stem cells (CSC) and MCF-7 cells. DOTAP-CPT/siRNA were prepared via electrostatic interaction on GRP78 siRNA or CLU siRNA. The size and ζ-potential of liposomes and lipoplexes were measured by dynamic light scattering techniques and electrophoretic light scattering spectrophotometry. The lipoplexes formation was tested by using gel electrophoresis. Immunofluorescence analysis showed that the expression level of CLU and GRP78 were significantly elevated in CSC compared to MCF-7 cells. Transfection and drug-delivery efficiency of DOTAP-CPT/siRNA were quantitatively compared with Lipofectamine 2000. Compared to free CPT, DOTAP-CPT-siCLU delivery in CSC and MCF-7 cells increased transfection efficiency and chemo-sensitivity by 4.1- and 5.9-fold, respectively. On the other hand, DOTAP-CPT-siGRP78 delivery increased transfection efficiency and chemo sensitivity by 4.4- and 6.2-fold in CSC and MCF-7 cells, respectively, compared to free CPT. It is significant that 3?±?1.2-fold increase in transfection efficiency was achieved by lipofectamine. Consequently, an increase in anti-cancer/gene silencing efficacy was quantitatively observed as an effect of DOTAP-CPT/siRNA treatment, which was relatively higher than lipofectamine treatment. Conclusively, our experimental data quantitatively demonstrate that using DOTAP-CPT-siRNA specifically targeting (CSCs) chemo-resistant protein in vitro offers substantial potential for synergistic anti-cancer therapy.  相似文献   

13.
Male infertility is becoming a rapidly growing problem around the world, mainly in the highly developed countries. Seminal proteome composition seems to be one of the crucial factors of the proper course of fertilization ‐ clusterin (CLU) is among the most important ones. CLU, as one of the crucial seminal plasma glycoproteins, plays a very important role in sperm capacitation and immune tolerance in the female reproductive tract. CLU is also known as a sensitive marker of oxidative stress. It has six n ‐glycosylation sites and also exhibits chaperone activity. An analysis of changes in the profile and degree of CLU glycosylation may shed some new light on the molecular mechanisms of the fertilization process and may be used as an additional diagnostic marker of male fertility. This study constitutes a review of the recently available literature concerning human seminal CLU, including changes in its glycosylation, analyzed in the context of human reproduction.  相似文献   

14.
Several physiological and pathophysiological events involving vascular endothelium occur at the microvascular level. Studies on human microvasculature require homogenous primary cultures of microvascular endothelial cells. However, procedures available for isolating and culturing human dermal microvascular cells (HDMEC) result in significant contamination with fibroblasts. To eliminate contamination with fibroblasts or other cells, we developed a procedure to isolate HDMEC from neonatal human foreskin by panning the cells using EN4, an anti-endothelial cell monoclonal antibody. Panned cells uniformly expressed von Willebrand factor and CD36, confirming their microvascular endothelial characteristics, whereas cells cultured without panning showed a significant degree of contamination with fibroblasts. In the presence of vascular endothelial growth factor (VEGF), HDMEC could be cultured under serum-free conditions. VEGF stimulated the growth of HDMEC in a dose-dependent manner in serum-free medium or in media supplemented with either human serum or newborn calf serum. Since differences exist between large vessel endothelial cells and microvascular endothelial cells, we compared the response to VEGF stimulation of HDMEC with human umbilical vein endothelial cells (HUVEC). The dose response of the two cell types to VEGF was different. This effect of VEGF on endothelial cells may be mediated by the VEGF receptorkdr,since mRNA forkdrwas detected using RT–PCR in both HDMEC and HUVEC. The procedure described in this study will make possible the culture of highly enriched HDMEC without contamination with fibroblasts and facilitate studies with these cells under defined assay conditions in a serum-free environment.  相似文献   

15.
This study was designed to test the hypothesis that endogenous estrogens decrease the expression of endothelial nitric oxide synthase (eNOS) in resistance-size bone arterioles, thereby reducing endothelium-dependent vasodilator function. Sexually mature female rats were ovariectomized to reduce endogenous estrogens. Age-matched female rats served as controls. Seven to ten days after ovariectomy, bone marrow tissue was collected from the femoral canal. Immuno-histochemistry was performed to detect expression of estrogen receptors, alpha and beta and eNOS. eNOS protein content in medullary bone arterioles was compared using Western blot analysis. Endothelial cell function was assessed by quantitating the dilation of isolated, pressurized bone arterioles in response to acetylcholine. The results indicate that the endothelium of bone arterioles from ovariectomized and control rats express ER-alpha, ER-beta and eNOS. eNOS protein content in the two groups of arterioles did not differ. However, the baseline diameter of arterioles from ovariectomized rats (63+/-4 microm) was significantly smaller than the diameter of arterioles from control rats (75+/-3 microm, p<0.05). The two groups of arterioles dilated equally in response to acetylcholine. L-NAME, an inhibitor of eNOS, almost completely abolished the dilator responses to acetylcholine, but not to sodium nitroprusside. L-Arginine restored acetylcholine-induced dilation after L-NAME treatment. Thus, arteriole dilation to acetylcholine appears to be mediated almost exclusively by NO. The smaller diameter of arterioles from ovariectomized rats suggests that endogenous estrogens exert a significant dilator influence on bone arterioles. However, the dilator influence does not appear to be mediated by an increase in eNOS expression or enhanced NO-dependent vasodilation. These results indicate that estrogens do not decrease eNOS expression or diminish NO-mediated dilation of bone medullary arterioles.  相似文献   

16.
Previous studies from this laboratory suggest that during maturation, rapid microvascular growth is accompanied by changes in the mechanisms responsible for regulation of tissue blood flow. To further define these changes, we studied isolated gracilis muscle arterioles from weanling ( approximately 25 days) and juvenile ( approximately 44 days) Sprague-Dawley rats to test the hypothesis that endothelial mechanisms for the control of arteriolar tone are altered with growth. Responses to the endothelium-dependent dilator acetylcholine (ACh) were greater in weanling arterioles (WA) than in juvenile arterioles (JA), whereas there were no consistent differences between age groups in arteriolar responses to other endothelium-dependent agonists (A-23187, vascular endothelial growth factor, and simvastatin). Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-l-arginine methyl ester (l-NAME) attenuated ACh-induced dilation in JA but not in WA. In JA, combined inhibition of NOS and cyclooxygenase (with indomethacin) reduced the dilator responses to ACh and simvastatin by approximately 90% and approximately 70%, respectively, but had no effect in WA. Cytochrome P450 epoxygenase inhibition [with 2-(propargyloxyphenyl) hexanoic acid] had no effect on responses to ACh or simvastatin in either age group. Inhibition of Ca(2+)-activated or ATP-dependent potassium channels (with tetraethylammonium or glibenclamide, respectively) reduced these arteriolar responses in JA but not those in WA. These findings suggest that in fully grown microvascular networks, endothelium-dependent arteriolar dilation is mediated by the combined release of endothelial nitric oxide and vasodilator prostanoids, and in part through activation of Ca(2+)-activated and ATP-dependent potassium channels. However, during earlier microvascular growth, this dilation is mediated by other factors yet to be identified. This may have significant implications for the regulation of tissue perfusion during microvascular development.  相似文献   

17.
Methamphetamine (METH) is a psychostimulant with high abuse potential and severe neurotoxicity. Recent studies in animal models have indicated that METH can impair the blood–brain barrier (BBB), suggesting that some of the neurotoxic effects resulting from METH abuse could be due to barrier disruption. We report here that while chronic exposure to METH disrupts barrier function of primary human brain microvascular endothelial cells (HBMECs) and human umbilical vein endothelial cells (HUVECs), an early pro-survival response is observed following acute exposure by induction of autophagic mechanisms. Acute METH exposure induces an early increase in Beclin1 and LC3 recruitment. This is mediated through inactivation of the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70S6K pathway, and upregulation of the ERK1/2. Blockade of Kappa opioid receptor (KOR), and treatment with autophagic inhibitors accelerated METH-induced apoptosis, suggesting that the early autophagic response is a survival mechanism for endothelial cells and is mediated through the kappa opioid receptor. Our studies indicate that kappa opioid receptor can be therapeutically exploited for attenuating METH-induced BBB dysfunction.  相似文献   

18.
Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ~55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax(-/-) and bax(-/-)/bak(-/-) double knock-out cells were resistant to nCLU-mediated cell death, whereas bak(-/-) or wild-type bax(+/+)/bak(+/+) cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.  相似文献   

19.
Positioned at the boundary between intra- and extravascular compartments, endothelial cells may influence many processes through their production of plasminogen activators (PA). Available data have shown that tissue-type plasminogen activator (t-PA) is the major form produced by human endothelial cells. We have compared the molecular forms of PA produced by human endothelial cells from different microvascular and large vessel sources including two different sites within the circulation of the kidney. Using combined immunoactivity assays specific for u-PA and t-PA activity and antigen, we found that both human renal microvascular and renal artery endothelial cells produced high levels of u-PA antigen (60.48 ng/10(5) cells/24 h and 50.42 ng/10(5) cells/24 h, respectively) and corresponding levels of u-PA activity after activation with plasmin. Activity was not evident before plasmin activation, showing that the u-PA produced is almost exclusively as single chain form U-PA. In contrast, human omental microvascular endothelial cells and human umbilical vein endothelial cells produced exclusively t-PA (8.80 ng/10(5) cells/24 h and 2.17 ng/10(5) cells/24 h, respectively). Neither endothelial cell type from human kidney produced plasminogen activator inhibitor, as determined by reverse fibrin autography and titration assays. Agents including phorbol ester, thrombin, and dexamethasone were shown to regulate the renal endothelial cell production and mRNA expression of both u-PA and t-PA. Among the macro- and microvascular endothelial cells tested, only those from the renal circulation produced high levels of single chain form U-PA, suggesting the vascular bed of origin determines the expression of plasminogen activators.  相似文献   

20.
Human microRNAs (miRs) have been implicated in human diseases presumably through the downregulation and silencing of targeted genes via post-translational modifications. However, their role in the early stage of coronary atherosclerosis is not known. The aim of this study was to test the hypothesis that patients with early atherosclerosis and coronary endothelial dysfunction (CED) have alterations in transcoronary miR gradients. Patients underwent coronary angiography and endothelial function testing in the cardiac catheterization laboratory. Patients were divided into abnormal (n = 26) and normal (n = 22) microvascular coronary endothelial function based on intracoronary response to infused acetylcholine measured as a percent change in coronary blood flow (CBF) and arterial diameter. Blood samples were obtained simultaneously from the aorta and coronary sinus at the time of catheterization for RNA isolation, and miR subsequently assessed. Baseline characteristics were similar in both groups. Patients with microvascular CED displayed transcoronary gradients significantly elevated in miR-92a and miR-133 normalized to C-elegans-39 miR. Percent change in CBF and the transcoronary gradient of miR-133 displayed a significant inverse correlation (r2 = 0.11, p = 0.03). Thus, we present novel data whereupon selected miRs demonstrate elevated transcoronary gradients in patients with microvascular CED. The current findings support further studies on the mechanistic role of miRs in coronary atherosclerosis and in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号