首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.  相似文献   

2.
Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.  相似文献   

3.
Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β‐(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)2–5 detected by high‐performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)3‐5. On the basis of structure‐based multiple‐sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site‐directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia.  相似文献   

4.
Chitinase-A from a lycophyte Selaginella doederleinii (SdChiA), having molecular mass of 53 kDa, was purified to homogeneity by column chromatography. The cDNA encoding SdChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1477 nucleotides and its open reading frame encoded a polypeptide of 467 amino acid residues. The deduced amino acid sequence indicated that SdChiA consisted of two N-terminal chitin-binding domains and a C-terminal plant class V chitinase catalytic domain, belonging to the carbohydrate-binding module family 18 (CBM18) and glycoside hydrolase family 18 (GH18), respectively. SdChiA had chitin-binding ability. The time-dependent cleavage pattern of (GlcNAc)4 by SdChiA showed that SdChiA specifically recognizes the β-anomer in the + 2 subsite of the substrate (GlcNAc)4 and cleaves the glycoside bond at the center of the substrate. This is the first report of the occurrence of a family 18 chitinase containing CBM18 chitin-binding domains.

Abbreviations: AtChiC: Arabidopsis thaliana class V chitinase; CBB: Coomassie brilliant blue R250; CBM: carbohydrate binding module family; CrChi-A: Cycas revolute chitinase-A; EaChiA: Equisetum arvense chitinase-A; GH: glycoside hydrolase family, GlxChi-B: gazyumaru latex chitinase-B; GlcNAc: N-acetylglucosamine; HPLC: high performance liquid chromatography; LysM; lysin motif; MtNFH1: Medicago truncatula ecotypes R108-1 chitinase; NCBI: national center for biotechnology information; NF: nodulation factor; NtChiV: Nicotiana tabacum class V chitinase; PCR: polymerase chain reaction; PrChi-A: Pteris ryukyuensis chitinase-A; RACE: rapid amplification of cDNA ends; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SdChiA: Selaginella doederleinii chitinase-A.  相似文献   


5.
A two-domain family GH19 chitinase from Japanese cedar (Cryptomeria japonica) pollen, CJP-4, which consists of an N-terminal CBM18 domain and a GH19 catalytic domain, is known to be an important allergen, that causes pollinosis. We report here the resonance assignments of the NMR spectrum of CJP-4. The backbone resonances were almost completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of a chitin dimer to the enzyme solution perturbed the chemical shifts of the resonances of amino acid residues forming a long extended binding site spanning from the CBM18 domain to the GH19 catalytic domain.  相似文献   

6.
7.
《Process Biochemistry》2014,49(10):1622-1629
The diversity of the biotechnological applications of chitinolytic enzymes requires different enzyme-producing strains with different properties suitable for each process. In this work the chitinase encoded by the chiA gene of Bacillus halodurans has been studied. The protein shows a modular structure characterized by the catalytic domain of glycosyl hydrolases family 18 (GH18), fibronectin type III domain (FnIIID) and a carbohydrate-binding module family 5 (CBM5). The expression of the gene in Escherichia coli has made it possible to demonstrate the functionality of the protein which is active in the temperature range of 5–55 °C and pH values of 5.5–8.5 while maintaining a high stability under suboptimal conditions. The enzyme hydrolyzes colloidal chitin and different p-NP(GlcNAc)n (n = 1–3) by an “-exo” type mechanism according to the information deduced from its sequence. The production of the protein was optimized by constructing recombinant strains, and the effect of the expression vector used, the cell density of the culture, the concentration of inducer and the induction time were studied. Based on its spectrum of activity, stability and mechanism of action, it arises as an enzyme of potential interest for production of N-acetyglucosamine or conversion of chitin into biologically active chito-oligosaccharides.  相似文献   

8.
In this study, we cloned the gene encoding goose-type (G-type) lysozyme with chitinase (Ra-ChiC) activity from Ralstonia sp. A-471 genomic DNA library. This is the first report of another type of chitinase after the previously reported chitinases ChiA (Ra-ChiA) and ChiB (Ra-ChiB) in the chitinase system of the moderately thermophilic bacterium, Ralstonia sp. A-471 and also the first such data in Ralstonia sp. G-type lysozyme gene. It consisted of 753 bp nucleotides, which encodes 251 amino acids including a putative signal peptide. This ORF was modular enzyme composed of a signal sequence, chitin-binding domain, linker, and catalytic domain. The catalytic domain of Ra-ChiC showed homologies to those of G-type lysozyme (glycoside hydrolases (GH) family 23, 16.8%) and lysozyme-like enzyme from Clostridium beijerincki (76.1%). Ra-ChiC had activities against ethylene glycol chitin, carboxyl methyl chitin, and soluble chitin but not against the cell wall of Micrococcus lysodeikticus. The enzyme produced α-anomer by hydrolyzing β-1,4-glycosidic linkage of the substrate, indicating that the enzyme catalyzes the hydrolysis through an inverting mechanism. When N-acetylglucosamine hexasaccharide [(GlcNAc)6] was hydrolyzed by the enzyme, the second and third glycosidic linkage from the non-reducing end were split producing (GlcNAc)2 + (GlcNAc)4 and (GlcNAc)3 + (GlcNAc)3 of almost the same concentration in the early stage of the reaction. The G-type lysozyme hydrolyzed (GlcNAc)6 in an endo-splitting manner, which produced (GlcNAc)3 + (GlcNAc)3 predominating over that to (GlcNAc)2 + (GlcNAc)4. Thus, Ra-ChiC was found to be a novel enzyme in its structural and functional properties. The sequence data reported in the present paper have been submitted to the DDBJ, EMBL, and NCBI databases under the accession number AB45458.  相似文献   

9.
Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain.  相似文献   

10.
Cel9B from Paenibacillus barcinonensis is a modular endoglucanase with a novel molecular architecture among family 9 enzymes that comprises a catalytic domain (GH9), a family 3c cellulose-binding domain (CBM3c), a fibronectin III-like domain repeat (Fn31,2), and a C-terminal family 3b cellulose-binding domain (CBM3b). A series of truncated derivatives of endoglucanase Cel9B have been constructed and characterized. Deletion of CBM3c produced a notable reduction in hydrolytic activity, while it did not affect the cellulose-binding properties as CBM3c did not show the ability to bind to cellulose. On the contrary, CBM3b exhibited binding to cellulose. The truncated forms devoid of CBM3b lost cellulose-binding ability and showed a reduced activity on crystalline cellulose, although activity on amorphous celluloses was not affected. Endoglucanase Cel9B produced only a small ratio of insoluble products from filter paper, while most of the reducing ends produced by the enzyme were released as soluble sugars (91%), indicating that it is a processive enzyme. Processivity of Cel9B resides in traits contained in the tandem of domains GH9–CBM3c, although the slightly reduced processivity of truncated form GH9–CBM3c suggests a minor contribution of domains Fn31,2 or CBM3b, not contained in it, on processivity of endoglucanase Cel9B.  相似文献   

11.
Aims: To investigate the attractant effect of 4‐O‐(N‐acetyl‐β‐d ‐glucosaminyl)‐d ‐glucosamine (GlcNAc‐GlcN) in the chemotaxis of Vibrio bacteria that produce carbohydrate esterase (CE) family 4 chitin oligosaccharide deacetylase (COD), an enzyme that catalyzes the production of GlcNAc‐GlcN from N,N′‐diacetylchitobiose (GlcNAc)2. Methods and Results: The chemotactic effect of disaccharides from chitin on several strains of Vibrio bacteria was investigated using an agar gel lane‐migration method. The results demonstrated that GlcNAc‐GlcN functions as an effective chemoattractant in the CE family 4 COD‐producing vibrios, Vibrio parahaemolyticus and Vibrio alginolyticus. In contrast, this phenomenon was not observed in Vibrio nereis or Vibrio furnissii, which lack genes encoding this enzyme. From transmission electron microscope observation of V. parahaemolyticus cells following the chemotaxis assay, GlcNAc‐GlcN appears to stimulate polar flagellum rotation. Conclusions: GlcNAc‐GlcN is a specific chemoattractant for the CE family 4 COD‐producing vibrios, V. parahaemolyticus and V. alginolyticus. Significance and Impact of the Study: It was clarified for the first time that GlcNAc‐GlcN functions as a signalling molecule in the chemotaxis of Vibrio bacteria that have an ability to produce CE family 4 COD, which generate GlcNAc‐GlcN from (GlcNAc)2.  相似文献   

12.
A chitinase gene belonging to the glycoside hydrolase family 19 from Vibrio proteolyticus (chi19) was cloned. The recombinant enzyme (Chi19) showed weak activities against polymeric substrates and considerable activities against fully N-acetylated chitooligosaccharides, (GlcNAc) n , whose degree of polymerization was greater than or equal to five. It hydrolyzed (GlcNAc) n at the second linkage position from the reducing ends of the chitooligosaccharides. The hydrolytic products of colloidal chitin were mainly (GlcNAc)2 from the initial stage of the reaction. The hydrolytic pattern of reduced colloidal chitin clearly suggested that the enzyme hydrolyzed the polymeric substrate from the reducing end.  相似文献   

13.

Key message

Euglena gracilis is a unicellular microalga showing characteristics of both plants and animals, and extensively used as a model organism in the research works of biochemistry and molecular biology. Biotechnological applications of E. gracilis have been conducted for production of numerous important compounds. However, chitin-mediated defense system intensively studied in higher plants remains to be investigated in this microalga. Recently, Taira et al. (Biosci Biotechnol Biochem 82:1090–1100, 2018) isolated a unique chitinase gene, comprising two catalytic domains almost homologous to each other (Cat1 and Cat2) and two chitin-binding domains (CBD1 and CBD2), from E. gracilis. We herein examined the mode of action and the specificity of the recombinant Cat2 by size exclusion chromatography and NMR spectroscopy. Both Cat1 and Cat2 appeared to act toward chitin substrate with non-processive/endo-splitting mode, recognizing two contiguous N-acetylglucosamine units at subsites ??2 and ??1. This is the first report on a chitinase having two endo-splitting catalytic domains. A cooperative action of two different endo-splitting domains may be advantageous for defensive action of the E. gracilis chitinase.

Abstract

The unicellular alga, E. gracilis, produces a chitinase consisting of two GH18 catalytic domains (Cat1 and Cat2) and two CBM18 chitin-binding domains (CBD1 and CBD2). Here, we produced a recombinant protein of the Cat2 domain to examine its mode of action as well as specificity. Cat2 hydrolyzed N-acetylglucosamine (A) oligomers (An, n?=?4, 5, and 6) and partially N-acetylated chitosans with a non-processive/endo-splitting mode of action. NMR analysis of the product mixture from the enzymatic digestion of chitosan revealed that the reducing ends were exclusively A-unit, and the nearest neighbors of the reducing ends were mostly A-unit but not exclusively. Both A-unit and D-unit were found at the non-reducing ends and the nearest neighbors. These results indicated strong and absolute specificities for subsites ??2 and ??1, respectively, and no preference for A-unit at subsites +?1 and +?2. The same results were obtained from sugar sequence analysis of the individual enzymatic products from the chitosans. The subsite specificities of Cat2 are similar to those of GH18 human chitotriosidase, but differ from those of plant GH18 chitinases. Since the structures of Cat1 and Cat2 resemble to each other (99% similarity in amino acid sequences), Cat1 may hydrolyze the substrate with the same mode of action. Thus, the E. gracilis chitinase appears to act toward chitin polysaccharide chain through a cooperative action of the two endo-splitting catalytic domains, recognizing two contiguous A-units at subsites ??2 and ??1.
  相似文献   

14.
A bacterium, GJ-18, having strong chitinolytic activity was isolated from coastal soil. The isolated strain was identified as Aeromonas sp. by morphological and biochemical properties along with 16S rRNA gene sequence. The crude chitinolytic activity of culture supernatants was maximal on the 5th day of culture. Below 45°C, chitin was effectively hydrolyzed to N-acetyl--d-glucosamine (GlcNAc) by Aeromonas sp. GJ-18 crude enzymes, but hydrolysis decreased markedly above 50°C. The optimum pH for enzyme activity was 5.0. TLC and HPLC analysis revealed that, below 45°C, the major reaction product was GlcNAc with a small amount of (GlcNAc)2 and (GlcNAc)3, whereas above 50°C the major product was (GlcNAc)2. When swollen chitin (100 mg) was incubated with crude enzyme preparations (10 U) at 40°C, chitin was hydrolyzed to 83.0 and 94.9% yield of GlcNAc within 5 and 9 days, respectively.  相似文献   

15.
Glycoside hydrolase (GH) family 13 comprises about 30 different specificities. Four of them have been proposed to form the GH13 pullulanase subfamily: pullulanase, isoamylase, maltooligosyl trehalohydrolase and branching enzyme forming the seven CAZy GH13 subfamilies: GH13 8-GH13 14. Recently, a new family of carbohydrate-binding modules (CBMs), the family CBM48 has been established containing the putative starch-binding domains from the pullulanase subfamily, the β-subunit of AMP-activated protein kinase and some other GH13 enzymes with pullulanase and/or α-amylase-pullulanase specificity. Since all of these enzymes are multidomain proteins and the structure for at least one representative of each enzyme specificity has already been determined, the main goal of the present study was to elucidate domain evolution within this GH13 pullulanase subfamily (84 real enzymes) focusing on the CBM48 module. With regard to CBM48 positioning in the amino acid sequence, the N-terminal end of a protein appears to be a predominant position. This is especially true for isoamylases and maltooligosyl trehalohydrolases. Secondary structure-based alignment of CBM modules from CBM48, CBM20 and CBM21 revealed that several residues known as consensus for CBM20 and CBM21 could also be identified in CBM48, but only branching enzymes possess the aromatic residues that correspond with the two tryptophans forming the evolutionary conserved starch-binding site 1 in CBM20. The evolutionary trees constructed for the individual domains, complete alignment, and the conserved sequence regions of the α-amylase family were found to be comparable to each other (except for the C-domain tree) with two basic parts: (i) branching enzymes and maltooligosyl trehalohydrolases; and (ii) pullulanases and isoamylases. Taxonomy was respected only within clusters with pure specificity, i.e. the evolution of CBM48 reflects the evolution of specificities rather than evolution of species. This is a feature different from the one observed for the starch-binding domain of the family CBM20 where the starch-binding domain evolution reflects the evolution of species.  相似文献   

16.
The chitin-binding domain of Streptomyces griseus chitinase C (ChBDChiC) belongs to CBM family 5. Only two exposed aromatic residues, W59 and W60, were observed in ChBDChiC, in contrast to three such residues on CBDCel5 in the same CBM family. To study importance of these residues in binding activity and other functions of ChBDChiC, site-directed mutagenesis was carried out. Single (W59A and W60A) and double (W59A/W60A) mutations abolished the binding activity of ChiC to colloidal chitin and decreased the hydrolytic activity toward not only colloidal chitin but also a soluble high Mr substrate, glycol chitin. Interaction of ChBDChiC with oligosaccharide was eliminated by these mutations. The hydrolytic activity toward oligosaccharide was increased by deletion of ChBD but not affected by these mutations, indicating that ChBD interferes with oligosaccharide hydrolysis but not through its binding activity. The antifungal activity was drastically decreased by all mutations and significant difference was observed between single and double mutants. Taken together with the structural information, these results suggest that ChBDChiC binds to chitin via a mechanism significantly different from CBDCel5, where two aromatic residues play major role, and contributes to various functions of ChiC. Sequence comparison indicated that ChBDChiC-type CBMs are dominant in CBM family 5.  相似文献   

17.
A chitinase was purified from the stomach of a fish, the silver croaker Pennahia argentatus, by ammonium sulfate fractionation and column chromatography using Chitopearl Basic BL-03, CM-Toyopearl 650S, and Butyl-Toyopearl 650S. The molecular mass and isoelectric point were estimated at 42 kDa and 6.7, respectively. The N-terminal amino acid sequence showed a high level of homology with family 18 chitinases. The optimum pH of silver croaker chitinase toward p-nitrophenyl N-acetylchitobioside (pNp-(GlcNAc)2) and colloidal chitin were observed to be pH 2.5 and 4.0, respectively, while chitinase activity increased about 1.5- to 3-fold with the presence of NaCl. N-Acetylchitooligosaccharide ((GlcNAc)n, n = 2–6) hydrolysis products and their anomer formation ratios were analyzed by HPLC using a TSK-GEL Amide-80 column. Since the silver croaker chitinase hydrolyzed (GlcNAc)4–6 and produced (GlcNAc)2–4, it was judged to be an endo-type chitinase. Meanwhile, an increase in β-anomers was recognized in the hydrolysis products, the same as with family 18 chitinases. This enzyme hydrolyzed (GlcNAc)5 to produce (GlcNAc)2 (79.2%) and (GlcNAc)3 (20.8%). Chitinase activity towards various substrates in the order pNp-(GlcNAc)n (n = 2–4) was pNp-(GlcNAc)2 >> pNp-(GlcNAc)4 > pNp-(GlcNAc)3. From these results, silver croaker chitinase was judged to be an enzyme that preferentially hydrolyzes the 2nd glycosidic link from the non-reducing end of (GlcNAc)n. The chitinase also showed wide substrate specificity for degrading α-chitin of shrimp and crab shell and β-chitin of squid pen. This coincides well with the feeding habit of the silver croaker, which feeds mainly on these animals.  相似文献   

18.
Glycosyl hydrolase (GH) family 18 chitinases (Chi) and family 33 chitin binding proteins (CBPs) from Bacillus thuringiensis serovar kurstaki (BtChi and BtCBP), B. licheniformis DSM13 (BliChi and BliCBP) and Serratia proteamaculans 568 (SpChiB and SpCBP21) were used to study the efficiency and synergistic action of BtChi, BliChi and SpChiB individually with BtCBP, BliCBP or SpCBP21. Chitinase assay revealed that only BtChi and SpChiB showed synergism in hydrolysis of chitin, while there was no increase in products generated by BliChi, in the presence of the three above mentioned CBPs. This suggests that some (specific) CBPs are able to exert a synergistic effect on (specific) chitinases. A mutant of BliChi, designated as BliGH, was constructed by deleting the C-terminal fibronectin III (FnIII) and carbohydrate binding module 5 (CBM5) to assess the contribution of FnIII and CBM5 domains in the synergistic interactions of GH18 chitinases with CBPs. Chitinase assay with BliGH revealed that the accessory domains play a major role in making BliChi an efficient enzyme. We studied binding of BtCBP and BliCBP to α- and β-chitin. The BtCBP, BliCBP or SpCBP21 did not act synergistically with chitinases in hydrolysis of the chitin, interspersed with other polymers, present in fungal cell walls.  相似文献   

19.
A bacterium, Aeromonas sp. GJ-18, having strong chitinolytic activity was isolated from coastal soil and used for crude enzyme preparations. This enzyme preparation contained N-acetyl-D-glucosaminidase and N,N-diacetylchitobiohydrolase. N-Acetyl-D-glucosaminidase was inactive above 50 °C, but N,N-diacetylchitobiohydrolase was stable at this temperature. Utilizing the temperature sensitivities of the chitin degradation enzymes in crude enzyme preparation, N-acetyl-D-glucosamine (GlcNAc) and N,N-diacetylchitobiose [(GlcNAc)2] were selectively produced from chitin. At 45 °C, GlcNAc was produced as a major hydrolytic product (94% composition) with a yield of 74% in 5 d, meanwhile at 55 °C (GlcNAc)2 was the major product (86%) with a yield of 35% within 5 d.Revisions requested 29 September 2004; Revisions received 1 November 2004  相似文献   

20.
ABSTRACT

The genes encoding chitin-degrading enzymes in Aeromonas salmonicida SWSY-1.411 were identified and cloned in Escherichia coli. The strain contained two glycoside hydrolase (GH) families 18 chitinases: AsChiA and AsChiB, two GH19 chitinases: AsChiC and AsChiD, and an auxiliary activities family 10 protein, lytic polysaccharide monooxygenase: AsLPMO10A. These enzymes were successfully expressed in E. coli and purified. AsChiB had the highest hydrolytic activity against insoluble chitin. AsChiD had the highest activity against water-soluble chitin. The peroxygenase activity of AsLPMO10A was lower compared to SmLPMO10A from Serratia marcescens. Synergism on powdered chitin degradation was observed when AsChiA and AsLPMO10A were combined with other chitinases of this strain. More than twice the increase of the synergistic effect was observed when powdered chitin was treated by a combination of AsLPMO10A with all chitinases. GH19 chitinases suppressed the hyphal growth of Trichoderma reesei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号