首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大豆过敏蛋白与品种改良   总被引:1,自引:0,他引:1  
方旭前  朱友林  邱丽娟 《遗传》2006,28(8):1043-1050
食物过敏是一个全世界关注的公共卫生问题。大豆蛋白在食品加工业的广泛应用,对大豆敏感人群带来了潜在的威胁。如何降低大豆过敏原含量提升大豆食品安全已成为日益关注的问题。大豆种子过敏蛋白包括种子贮存蛋白、结构蛋白和防御相关蛋白,其中7S 伴球蛋白的多肽片段Gly m Bd 28K, Gly m Bd 30K和Gly m Bd 60K是三种主要的过敏原。目前通过对过敏蛋白的理化性质、过敏原性和基因结构的认识,运用食品加工工艺、传统育种及基因工程技术等方法,在减少大豆和大豆产品的过敏原性方面已取得一定的进展。本文拟从大豆过敏原的分类、主要过敏原Gly m Bd 28K和Gly m Bd 30K的理化性质及基因结构、大豆过敏蛋白在遗传改良中的应用对大豆过敏蛋白进行综述。  相似文献   

2.
Gly m Bd 28K is one of the major allergens in soybeans, but there is limited information on its IgG-binding epitopes. Thirty-four overlapping peptides that covered the entire sequence of Gly m Bd 28K were synthesized, and 3 monoclonal antibodies against Gly m Bd 28K were utilized to identify the IgG-binding regions of Gly m Bd 28K. Three dominant peptides corresponding to 28GDKKSPKSLFLMSNS42(G28-S42), 56LKSHGGRIFYRHMHI70(L56-I70), and 154ETFQSFYIGGGANSH168(E154-H168) were recognized. L56-I70 is the most important epitope, and a competitive ELISA indicated that it could inhibit the binding of monoclonal antibody to Gly m Bd 28K protein. Alanine scanning of L56-I70 documented that F64, Y65, and R66 were the critical amino acids of this epitope. Two bioinformatics tools, ABCpred and BepiPred, were used to predict the epitopes of Gly m Bd 28K, and the predictions were compared with the epitopes that we had located by monoclonal antibodies.  相似文献   

3.
Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods.  相似文献   

4.
Gly m Bd 30K蛋白是大豆中主要的免疫显性过敏原之一,会引起人和牲畜腹泻和肠道炎症等过敏反应.因此,发掘低Gly m Bd 30K蛋白含量优异种质对于培育优质大豆品种具有重要意义.为了获得致敏蛋白Gly m Bd 30K低含量的优异种质,根据Gly m Bd 30K蛋白的190-379aa多肽序列制备多克隆抗体...  相似文献   

5.
One of the major soybean allergens, Gly m Bd 28K, is suggested to be biosynthesized as a preproprotein form, which would be composed of a signal peptide, Gly m Bd 28K and the C-terminal peptide (the 23-kDa peptide). However, the 23-kDa peptide has never been characterized. In the present study, we prepared a monoclonal antibody (mAb) against a recombinant 23-kDa peptide expressed in Escherichia coli to detect the 23-kDa peptide in soybean. Several proteins were detected by immunoblotting with the mAb. All of the proteins were shown to have the identical N-terminal amino acid sequence, suggesting that the proteins correspond to the C-terminal part of the Gly m Bd 28K precursor. Furthermore, Gly m Bd 28K and the 23-kDa peptide were observed to come out at the 21st day after flowering and to locate in the crystalloid part of protein storage vacuoles in growing cotyledons. Some of the 23-kDa peptides were shown to be glycoproteins with an N-linked glycan moiety and exhibited the binding to IgE antibodies in the sera of patients sensitive to soybean. The binding of the peptides to IgE antibodies was suggested to be predominantly dependent on their glycan moiety. This study proves the occurrence of the 23-kDa peptide in soybean and that it is a new allergen.  相似文献   

6.
Cutaneous exposure to food allergens can predispose individuals to food allergies. Soybean, a major allergenic food, is an ingredient in various cosmetic products. However, the types of soybean proteins that are percutaneously sensitizing in humans or animal models remain unknown. In this study, BALB/c mice were dorsally shaved and epicutaneously exposed to a crude soybean extract including sodium dodecyl sulfate or distilled water alone. Specific IgEs secreted in response to 7S globulin (Gly m 5), 11S globulin (Gly m 6), Gly m 3, and Gly m 4 were measured using enzyme-linked immunosorbent assays or immunoblots. Exposure to soybean extract elicited the secretion of soybean-specific IgEs. Of the soybean proteins, 7S and 11S globulins acted as percutaneous sensitizers in 6/9 mice (67%). Additionally, IgE bound specifically and preferentially to the 7S globulin β subunit. In conclusion, this is the first report to identify percutaneously sensitizing soybean allergens in a mouse model.  相似文献   

7.

Background

Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity.

Methods

Cow''s milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy.

Results

Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice.

Conclusions

Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide.  相似文献   

8.
Gly m Bd 28K,Gly m Bd 30K and Gly m Bd 60K are the major soybean(Glycine max(L.)Merr.)allergens limiting the consumption of a good protein source for sensitive individuals.However,little is known about their temporal-spatial expression during seed development and upon germination.The present data shows that soy allergens accumulated in both the embryonic axes and cotyledon,but expression patterns differed depending on the specific allergen.Allergens accumulated sooner and to a greater level in cotyledons than in embryonic axes.Gly m Bd 28 began at 14 d after flowering,7 to 14 d earlier than Gly m Bd 30K and Gly m Bd 60K.Comparatively,their degradation was faster and more profound in embryonic axes than in cotyledons.Gly m Bd 60K began to decline at 36 h after imbibition and remained detectable up to 108 h in cotyledons.In contrast,the Glym Bd 60K protein was reduced at 24 h,and eventually disappeared at 96 h.In cotyledons Gly m Bd 28K first declined at 24 h,then increased from 36 h to 48 h,followed by its large reduction at 72 h after seed germination.These findings provide useful information on soy allergen biosynthesis and will help move forward towards developing a hypoallergenic soybean for safer food.  相似文献   

9.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

10.
In many cases, patients allergic to birch pollen also show allergic reactions after ingestion of certain fruits or vegetables. This observation is explained at the molecular level by cross-reactivity of IgE antibodies induced by sensitization to the major birch pollen allergen Bet v 1 with homologous food allergens. As IgE antibodies recognize conformational epitopes, a precise structural characterization of the allergens involved is necessary to understand cross-reactivity and thus to develop new methods of allergen-specific immunotherapy for allergic patients. Here, we report the three-dimensional solution structure of the soybean allergen Gly m 4, a member of the superfamily of Bet v 1 homologous proteins and a cross-reactant with IgE antibodies originally raised against Bet v 1 as shown by immunoblot inhibition and histamine release assays. Although the overall fold of Gly m 4 is very similar to that of Bet v 1, the three-dimensional structures of these proteins differ in detail. The Gly m 4 local structures that display those differences are also found in proteins from yellow lupine with known physiological function. The three-dimensional structure of Gly m 4 may thus shed some light on the physiological function of this subgroup of PR10 proteins (class 10 of pathogenesis-related proteins) and, in combination with immunological data, allow us to propose surface patches that might represent cross-reactive epitopes.  相似文献   

11.
Detailed IgE‐binding epitope analysis is a key requirement for the understanding and development of diagnostic and therapeutic agents to address food allergies. An IgE‐specific linear peptide microarray with random phage peptide display for the high‐resolution mapping of IgE‐binding epitopes of the major soybean allergen Gly m 4, which is a homologue to the birch pollen allergen Bet v 1 is combined. Three epitopes are identified and mapped to a resolution of four key amino acids, allowing the rational design and the production of three Gly m 4 mutants with the aim to abolish or reduce the binding of epitope‐specific IgE. In ELISA, the binding of the mutant allergens to polyclonal rabbit‐anti Gly m 4 serum as well as IgE purified from Gly m 4‐reactive soybean allergy patient sera is reduced by up to 63% compared to the wild‐type allergen. Basophil stimulation experiments using RBL‐SX38 cells loaded with patient IgE are showed a decreased stimulation from 25% for the wild‐type Gly m 4 to 13% for one mutant. The presented approach demonstrates the feasibility of precise mapping of allergy‐related IgE‐binding epitopes, allowing the rational design of less allergenic mutants as potential therapeutic agents.  相似文献   

12.
Genetic modification removes an immunodominant allergen from soybean   总被引:17,自引:0,他引:17       下载免费PDF全文
The increasing use of soybean (Glycine max) products in processed foods poses a potential threat to soybean-sensitive food-allergic individuals. In vitro assays on soybean seed proteins with sera from soybean-sensitive individuals have immunoglobulin E reactivity to abundant storage proteins and a few less-abundant seed proteins. One of these low abundance proteins, Gly m Bd 30 K, also referred to as P34, is in fact a major (i.e. immunodominant) soybean allergen. Although a member of the papain protease superfamily, Gly m Bd 30 K has a glycine in the conserved catalytic cysteine position found in all other cysteine proteases. Transgene-induced gene silencing was used to prevent the accumulation of Gly m Bd 30 K protein in soybean seeds. The Gly m Bd 30 K-silenced plants and their seeds lacked any compositional, developmental, structural, or ultrastructural phenotypic differences when compared with control plants. Proteomic analysis of extracts from transgenic seed detected the suppression of Gly m Bd 30 K-related peptides but no other significant changes in polypeptide pattern. The lack of a collateral alteration of any other seed protein in the Gly m Bd 30 K-silenced seeds supports the presumption that the protein does not have a role in seed protein processing and maturation. These data provide evidence for substantial equivalence of composition of transgenic and non-transgenic seed eliminating one of the dominant allergens of soybean seeds.  相似文献   

13.
Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds.  相似文献   

14.
Wheat belongs to six major food allergens inducing IgE-mediated hypersensitivity reaction manifesting as cutaneous, gastrointestinal, and respiratory symptoms. Although cereals are a staple food item in most diets, only a few wheat proteins causing hypersensitivity have been identified. To characterize wheat allergens, salt-soluble wheat extracts were separated by 1-DE and 2-DE and IgE-binding proteins were detected by immunoblotting using sera of patients with allergy to ingested wheat. Proteins, frequently recognized by IgE on 2-DE were analyzed by MALDI-TOF and QTOF and their spectrum was completed by 1-DE and LCQ(DECA) nLC-MS/MS IT technique. Using all three techniques we identified 19 potential wheat allergens such as alpha-amylase inhibitors, beta-amylase, profilin, serpin, beta-D-glucan exohydrolase, and 27K protein. Employing newly developed ELISA, levels of IgE Abs against Sulamit wheat extract and alpha-amylase inhibitors type 1 and 3 were quantified and shown to be significantly elevated in sera of allergic patients compared to those of healthy controls. The level of IgE Abs against alpha-amylase inhibitor type 3 was lower, slightly above the cut-off value in the majority of patients' sera. Our findings contribute to the identification of wheat allergens aimed to increase the specificity of serum IgE and cell activation diagnostic assays.  相似文献   

15.
We developed an oral sensitization protocol for food proteins for the rat. Young Brown Norway (BN) rats were exposed to 1 mg ovalbumin (OVA) by daily gavage dosing for 42 days without the use of an adjuvant. OVA-specific IgE and IgG responses were determined by ELISA. On an oral challenge with OVA some clinical symptoms of food allergy-like effects on the respiratory system, blood pressure, and permeability of the gastrointestinal barrier were studied. In addition, BN rats were orally exposed to a total hen egg white protein (HEW) extract and cow's milk (CM) and the specificities of induced antibody responses were compared with the specificities of antibodies in sera from egg- and milk-allergic patients using immunoblotting. Animals orally exposed to the allergens developed specific IgE and IgG antibodies which recognized the same proteins compared with antibodies from egg- or CM-allergic patients. Among the various clinical symptoms of food allergy, gut permeability was increased after an oral challenge. In addition, some animals demonstrated a temporary decrease in breathing frequency or systolic blood pressure. The results obtained show that the Brown Norway rat is a suitable animal model for inducing specific IgG and IgE responses on daily intragastric dosing of OVA without the use of an adjuvant. Moreover, local immune-mediated effects on oral challenge are observed. The observation that enterally exposed BN rats and food-allergic patients demonstrate antibody responses to a comparable selection of proteins on exposure to different protein mixtures (HEW and CM) further supports the suitability of the BN rat as an animal model for food allergy research and for the study of the allergenicity of (novel) food proteins.  相似文献   

16.
Vegetative storage proteins (VSPs) have been extensively studiedin Glycine max, but not in perennial relatives of the cultivatedsoybean. The occurrence and gene expression of VSPs and a RubiscoComplex Protein (RCP) in several Glycine species was investigatedby mRNA blot hybridization and protein immunoblotting. RCP hada developmental pattern of gene expression that closely paralleledthat of VSP. The RCP gene was also induced by depodding, methyljasmonatetreatment, wounding, and to a lesser extent by nitrogen fertilization,as was previously found for the VSPs. VSP in leaves of 13 perennialsoybeans was heterogeneous in apparent size and number of bandsdetected by immunoblotting following SDS-PAGE. In contrast,RCP was detected as a single band of nearly identical mobilityin all species. Both proteins were most abundant in young leavesof the perennials, and methyljasmonate and wounding inducedboth VSP and RCP gene expression in perennial soybeans. Theseresults suggest that the VSPs in perennial soybeans functionas storage reserves, as they do in G. max. Key words: Soybean, methyljasmonate, perennial, storage  相似文献   

17.
An immortalized B-cell library consisting of cells secreting antibodies to food allergens has been prepared. Peripheral B-cells from seven healthy donors were transformed with Epstein-Barr virus and an immortalized human B-cell library with 2,202 ampoules of multi-clone B-lymphoblastoid cells was obtained. The B-cell library contained various types of B-lymphoblastoid cells secreting antibodies to rice, soybeans, milk, and eggs, and can be used to analyze food allergens. © Rapid Science Ltd. 1998  相似文献   

18.
Suzuki H  Wagner T  Tierney ML 《Plant physiology》1993,101(4):1283-1287
We have investigated the wound-induced expression of two members of the soybean (Glycine max L.) proline-rich cell wall protein gene family and show that SbPRP1 and SbPRP2 exhibit unique patterns of expression after physical damage. SbPRP1 mRNA can be detected in the hook of soybean seedlings within 2 h after wounding and is present at high levels in the hook and elongating hypocotyl 20 h after wounding. In contrast, SbPRP2 mRNA increases transiently and rapidly throughout the soybean seedling after wounding. SbPRP2 is also induced by wounding in soybean leaves, but the pattern of mRNA accumulation in leaves is distinct from that seen in seedlings and reaches high levels of expression 20 h after physical damage. SbPRP2 mRNA levels were also found to increase in the mature hypocotyl and roots of seedlings in response to treatment with 10 [mu]M indoleacetic acid and naphthalene-1-acetic acid. These data indicate that the wound-induced expression of PRPs in soybean is tissue specific and that the regulation of these genes after physical damage may operate through different signal transduction pathways.  相似文献   

19.
Peanuts (Arachis hypogaea) contain some of the most potent food allergens. In recent years an increasing prevalence of peanut allergies both in children and adults has been observed in the USA and in Europe. In vitro identification and characterization of allergens including those from peanut have been frequently performed by Western blotting. However this method may alter the immunoglobulin E (IgE) antibody reactivity since the proteins are denatured by detergent treatment and/or reduction of disulfide bonds by reducing reagents and does not answer the question how peanut allergens interact with the human digestive apparatus and immune system. Size exclusion chromatography of peanut extract shows that approximately 90% of the total protein content is eluted as one peak in the exclusion volume with a molecular mass of over 200 kDa. The proteins of this fraction were analyzed by blue-native polyacrylamide gel electrophoresis (PAGE), immunoblotting, two-dimensional PAGE and Western blotting. A complex of Ara h 1 (Acc. no. P43237), Ara h 3/4 (AAM46958), Ara h 3 (AAC63045), Ara h 4 (AF086821), Gly 1 (AAG01363) and iso-Ara h 3 (AAT39430) was identified using patients' IgE and allergen-specific monoclonal antibodies; N-terminal sequencing and matrix-assisted laser desorption/ionisation-time of flight analysis verified these findings. A comparison of the peanut allergen sequences of Ara h 3/4, Ara h 3, Ara h 4 and peanut trypsin inhibitor (AF487543) and the proteins Gly 1 and iso-Ara h 3, not yet described as allergens, leads to the conclusion that these proteins are isoallergens of each other. It was shown that these isoallergens are post-translationally cleaved and held together by disulfide bonds in accordance to the 11S plant seed storage proteins signature.  相似文献   

20.
Binding protein (BiP) is a widely distributed and highly conserved endoplasmic-reticulum luminal protein that has been implicated in cotranslational folding of nascent polypeptides, and in the recognition and disposal of misfolded polypeptides. Analysis of cDNA sequences and genomic blots indicates that soybeans (Glycine max L. Merr.) possess a small gene family encoding BiP. The deduced sequence of BiP is very similar to that of other plant BiPs. We have examined the expression of BiP in several different terminally differentiated soybean organs including leaves, pods and seed cotyledons. Expression of BiP mRNA increases during leaf expansion while levels of BiP protein decrease. Leaf BiP mRNA is subject to temporal control, exhibiting a large difference in expression in a few hours between dusk and night. The expression of BiP mRNA varies in direct correlation with accumulation of seed storage proteins. The hybridization suggests that maturing-seed BiP is likely to be a different isoform from vegetative BiPs. Levels of BiP protein in maturing seeds vary with BiP mRNA. High levels of BiP mRNA are detected after 3 d of seedling growth. Little change in either BiP mRNA or protein levels was detected in maturing soybean pods, although BiP-protein levels decrease in fully mature pods. Persistent wounding of leaves by whiteflies induces massive overexpression of BiP mRNA while only slightly increasing BiP-protein levels. In contrast single-event puncture wounding only slightly induces additional BiP expression above the temporal variations. These observations indicate that BiP is not constitutively expressed in terminally differentiated plant organs. Expression of BiP is highest during the developmental stages of leaves, pods and seeds when their constituent cells are producing seed or vegetative storage proteins, and appears to be subject to complex regulation, including developmental, temporal and wounding.The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.Abbreviations BiP binding protein The sequences reported in this paper have been submitted to Gen-Bank and are identified with the accession numbers BiP-A (U08384), BiP-B (U08383), BiP-C (U08382) and -1,3 glucanase (U08405).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号