首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.  相似文献   

2.
Dextranase is an enzyme that hydrolyzes dextran α-1,6 linkages. Streptococcus mutans dextranase belongs to glycoside hydrolase family 66, producing isomaltooligosaccharides of various sizes and consisting of at least five amino acid sequence regions. The crystal structure of the conserved fragment from Gln100 to Ile732 of S. mutans dextranase, devoid of its N- and C-terminal variable regions, was determined at 1.6 Å resolution and found to contain three structural domains. Domain N possessed an immunoglobulin-like β-sandwich fold; domain A contained the enzyme''s catalytic module, comprising a (β/α)8-barrel; and domain C formed a β-sandwich structure containing two Greek key motifs. Two ligand complex structures were also determined, and, in the enzyme-isomaltotriose complex structure, the bound isomaltooligosaccharide with four glucose moieties was observed in the catalytic glycone cleft and considered to be the transglycosylation product of the enzyme, indicating the presence of four subsites, −4 to −1, in the catalytic cleft. The complexed structure with 4′,5′-epoxypentyl-α-d-glucopyranoside, a suicide substrate of the enzyme, revealed that the epoxide ring reacted to form a covalent bond with the Asp385 side chain. These structures collectively indicated that Asp385 was the catalytic nucleophile and that Glu453 was the acid/base of the double displacement mechanism, in which the enzyme showed a retaining catalytic character. This is the first structural report for the enzyme belonging to glycoside hydrolase family 66, elucidating the enzyme''s catalytic machinery.  相似文献   

3.
A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non-ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50-200 mg/mL(-1) and 10-30 U/mL(-1), respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity.  相似文献   

4.
A psychrotolerant dextranase-producing bacterium was isolated from the Gaogong island seacoast near Jiangsu, China. The bacterium, denoted as DP03, was identified as Catenovulum sp. based on its phenotype, biochemical characteristics, and 16S rRNA gene comparison. The optimal enzyme production time, initial pH, temperature, and aeration conditions of strain DP03 were found to be 28 h, 8.0, 30 °C, and 25 % volume of liquid in 100-ml Erlenmeyer flasks, respectively. The ability of 1 % dextran T20 to induce dextranase was investigated. Dextranase from strain DP03 displayed its maximum activity at pH 8.0 and 40 °C and was found to be stable at 30 °C and over a broad range of pH values (pH 6–11). Scanning electron microscopy showed that dextranase from the isolate DP03 could at least partially prevent Streptococcus mutans from forming biofilms on glass coverslips.  相似文献   

5.
α-Glucan produced by crude dextransucrase (CEP) of Streptococcus mutans E49 was separated into the following three fractions: a water-insoluble glucan fraction (designated as IG), a water-soluble glucan fraction with a wide distribution of molecular weight (SG-1) and an oligosaccharide (SG-2). Formation of these products, which had characteristic courses, were remarkably reduced in the presence of ribocitrin. Production of IG and SG-1 by CEP and the inhibitory activity of ribocitrin were highly pH-dependent. With regard to dextran T10, ribocitrin inhibited IG production competitively.  相似文献   

6.
Dental plaque is a biofilm of water-soluble and water-insoluble polysaccharides, produced primarily by Streptococcus mutans. Dextranase can inhibit biofilm formation. Here, a dextranase gene from the marine microorganism Arthrobacter oxydans KQ11-1 is described, and cloned and expressed using E. coli DH5α competent cells. The recombinant enzyme was then purified and its properties were characterized. The optimal temperature and pH were determined to be 60°C and 6.5, respectively. High-performance liquid chromatography data show that the final hydrolysis products were glucose, maltose, maltotriose, and maltotetraose. Thus, dextranase can inhibit the adhesive ability of S. mutans. The minimum biofilm inhibition and reduction concentrations (MBIC50 and MBRC50) of dextranase were 2 U ml?1 and 5 U ml?1, respectively. Scanning electron microscopy and confocal laser scanning microscope (CLSM) observations confirmed that dextranase inhibited biofilm formation and removed previously formed biofilms.  相似文献   

7.
Bacillus circulans T-3040 produces cycloisomaltooligosaccharide glucanotransferase (CITase) and cycloisomaltooligosaccharides (cyclodextrans, CIs) when it is grown in media containing dextran as the carbon source. To investigate the effects of carbon sources on CITase activity, B. circulans T-3040 was cultured with glucose; sucrose; a mixture of isomaltose, isomaltotriose, and panose (IMOs); a mixture of maltohexaose and maltoheptaose (G67); dextrin (average degree of polymerization?=?36); dextran 40; and soluble starch. In addition to dextran 40, CIs were produced when the T-3040 strain was grown in media containing soluble starch as the sole carbon source. CITase production was induced by dextran 40, IMOs, and soluble starch but not by G67 or dextrin, which suggests that α-1,6 glucosidic linkages are required for CITase induction. Although CITase was induced by IMOs, no CIs were produced in the culture. CI-producing activity in the presence of soluble starch as the substrate (SS-CITase activity) was observed only in cultures containing dextran 40 or soluble starch. The production of CITase was significantly unaffected by glucose addition, but SS-CITase activity almost completely disappeared after glucose addition. A 135-kDa protein was found to contribute to CI formation from starch in the presence of CITase. This protein had a disproportionation activity with maltooligosaccharides, and its induction and inhibition system may be different from those of CITase.  相似文献   

8.
A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (1/1, 500 to 1/40, 000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3.  相似文献   

9.
A cycloisomaltooligosaccharide (CI; cyclodextran) production system was developed using a Bacillus subtilis expression system for the cycloisomaltooligosaccharide glucanotransferase (CITase) gene. The CITase gene of Bacillus circulans T-3040, along with the α-amylase promoter (PamyQ) and amyQ signal sequence of Bacillus amyloliquefaciens, was cloned into the Bacillus expression vector pUB110 and subsequently expressed in B. subtilis strain 168 and its alkaline (aprE) and neutral (nprE) protease-deficient strains. The recombinant CITase produced by the protease-deficient strains reached 1 U/mL in the culture supernatant within 48 h of cultivation, which was approximately 7.5 times more than that produced by the industrial CITase-producing strain B. circulans G22-10 derived from B. circulans T-3040. When aprE- and nprE-deficient B. subtilis 168 harboring the CITase gene was cultured with 10% dextran 40 for 48 h, 17% of the dextran in the culture was converted to CIs (CI-7 to CI-12), which was approximately three times more than that converted by B. circulans G22-10 under the same dextran concentration. The B. subtilis host–vector system enabled us to produce CIs by direct fermentation of dextran along with high CITase production, which was not possible in B. circulans G22-10 due to growth inhibition by dextran at high concentrations and limited production of CITase.  相似文献   

10.
The dextranase added in current commercial dextranase-containing mouthwashes is largely from fungi. However, fungal dextranase has shown much higher optimum temperature than bacterial dextranase and relatively low activity when used in human oral cavities. Bacterial dextranase has been considered to be more effective and suitable for dental caries prevention. In this study, a dextranase (Dex410) from marine Arthrobacter sp. was purified and characterized. Dex410 is a 64-kDa endoglycosidase. The specific activity of Dex410 was 11.9 U/mg at optimum pH 5.5 and 45 °C. The main end-product of Dex410 was isomaltotriose, isomaltoteraose, and isomaltopentaose by hydrolyzing dextran T2000. In vitro studies showed that Dex410 effectively inhibited the Streptococcus mutans biofilm growth in coverage, biomass, and water-soluble glucan (WSG) by more than 80, 90, and 95 %, respectively. The animal experiment revealed that for short-term use (1.5 months), both Dex410 and the commercial mouthwash Biotene (Laclede Professional Products, Gardena, CA, USA) had a significant inhibitory effect on caries (p = 0.0008 and 0.0001, respectively), while for long-term use (3 months), only Dex410 showed significant inhibitory effect on dental caries (p = 0.005). The dextranase Dex410 from a marine-derived Arthrobacter sp. strain possessed the enzyme properties suitable to human oral environment and applicable to oral hygiene products.  相似文献   

11.
Dextran glucosidase from Streptococcus mutans (SmDG), which belongs to glycoside hydrolase family 13 (GH13), hydrolyzes the non-reducing terminal glucosidic linkage of isomaltooligosaccharides and dextran. Thermal deactivation of SmDG did not follow the single exponential decay but rather the two-step irreversible deactivation model, which involves an active intermediate having 39% specific activity. The presence of a low concentration of CaCl2 increased the thermostability of SmDG, mainly due to a marked reduction in the rate constant of deactivation of the intermediate. The addition of MgCl2 also enhanced thermostability, while KCl and NaCl were not effective. Therefore, divalent cations, particularly Ca2+, were considered to stabilize SmDG. On the other hand, CaCl2 had no significant effect on catalytic reaction. The enhanced stability by Ca2+ was probably related to calcium binding in the β→α loop 1 of the (β?α)8 barrel of SmDG. Because similar structures and sequences are widespread in GH13, these GH13 enzymes might have been stabilized by calcium ions.  相似文献   

12.
A dextranase (EC 3.2.1.11) was purified and characterized from the IP-29 strain of Sporothrix schenckii, a dimorphic pathogenic fungus. Growing cells secreted the enzyme into a standard culture medium (20 °C) that supports the mycelial phase. Soluble bacterial dextrans substituted for glucose as substrate with a small decrease in cellular yield but a tenfold increase in the production of dextranase. This enzyme is a monomeric protein with a molecular mass of 79 kDa, a pH optimum of 5.0, and an action pattern against a soluble 170-kDa bacterial dextran that leads to a final mixture of glucose (38%), isomaltose (38%), and branched oligosaccharides (24%). In the presence of 200 mM sodium acetate buffer (pH 5.0), the K m for soluble dextran was 0.067 ± 0.003% (w/v). Salts of Hg2+, (UO2)2+, Pb2+, Cu2+, and Zn2+ inhibited by affecting both V max and K m. The enzyme was most stable between pH values of 4.50 and 4.75, where the half-life at 55 °C was 18 min and the energy of activation for heat denaturation was 99 kcal/mol. S. schenckii dextranase catalyzed the degradation of cross-linked dextran chains in Sephadex G-50 to G-200, and the latter was a good substrate for cell growth at 20 °C. Highly cross-linked grades (i.e., G-10 and G-25) were refractory to hydrolysis. Most strains of S. schenckii from Europe and North America tested positive for dextranase when grown at 20 °C. All of these isolates grew on glucose at 35 °C, a condition that is typically associated with the yeast phase, but they did not express dextranase and were incapable of using dextran as a carbon source at the higher temperature. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

13.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

14.
An extracellular protein produced by Streptococcus mutans was purified to electrophoretic homogeneity by affinity chromatography on Sephadex G50 followed by gel filtration. The protein is devoid of both dextransucrase and dextranase activity but binds dextran and therefore probably is implicated in the adherence of S. mutans cells to the host tooth surface. The presence of the dextran-binding protein may be a determinant of the pathogenicity of such cariogenic micro-organisms.  相似文献   

15.
Twenty-eight Penicillium cultures were screened for dextranase activity. Dextranase yield of about 2000 DU/ml was obtained with Penicillium funiculosum SH-5. Maximum dextranase concentration was attained only when cell mass decreased. The kinetics of the dextranase production was correlated with the cell mass by a two-parameter model. The optimum pH and temperature for dextranase were 5.0-5.5 and 55°C, respectively. Crude dextranase preparation was inhibitory to insoluble glucan formation by streptococcus mutans 6715 in vitro.  相似文献   

16.
Multiple forms of native and recombinant endo-dextranases (Dexs) of the glycoside hydrolase family (GH) 66 exist. The GH 66 Dex gene from Streptococcus mutans ATCC 25175 (SmDex) was expressed in Escherichia coli. The recombinant full-size (95.4 kDa) SmDex protein was digested to form an 89.8 kDa isoform (SmDex90). The purified SmDex90 was proteolytically degraded to more than seven polypeptides (23–70 kDa) during long storage. The protease-insensitive protein was desirable for the biochemical analysis and utilization of SmDex. GH 66 Dex was predicted to comprise four regions from the N- to C-termini: N-terminal variable region (N-VR), conserved region (CR), glucan-binding site (GBS), and C-terminal variable region (C-VR). Five truncated SmDexs were generated by deleting N-VR, GBS, and/or C-VR. Two truncation-mutant enzymes devoid of C-VR (TM-NCGΔ) or N-VR/C-VR (TM-ΔCGΔ) were catalytically active, thereby indicating that N-VR and C-VR were not essential for the catalytic activity. TM-ΔCGΔ did not accept any further protease-degradation during long storage. TM-NCGΔ and TM-ΔCGΔ enhanced substrate hydrolysis, suggesting that N-VR and C-VR induce hindered substrate binding to the active site.  相似文献   

17.
An α-d-galactosidase was purified from the culture filtrate of Corticium rolfsii IFO 6146 by a combination of QAE-Sephadex A-50 and SE-Sephadex C-50 chromatography. The purified enzyme was demonstrated to be free of other possibly interfering glycosidases and glycanases. The maximum activity of the enzyme towards p-nitrophenyl α-d-galactopyrano-side was found to be at pH 2.5 to 4.5, and the enzyme was fairly active at pH 1.1 to 2.0. The enzyme was stable over a pH range 4.0 to 7.0 at 5°C for 72 hr and relatively unstable at pH 1.1 to 2.0 as compared with endo-polygalacturonase, α-l-arabinofuranosidase and β-d-galactosidase produced by C. rolfsii. The enzymic activity was completely inhibited by Hg2+ and Ag+ ions, respectively. Km values were determined to be 0.16 × 10?3 m for p-nitrophenyl α-d-galactopyranoside and 0.26 × 10?3m for o-nitrophenyl α-d-galactopyranoside. The values of Vmax were also determined to be 26.6 μmoles and 28.6 μmoles per min per mg for p- and o-nitrophenyl α-d-galactopyranoside, respectively.  相似文献   

18.
An α-galactosidase from alfalfa seeds was purified 140-fold by ammonium sulfate fractionation, and column chromatography on Sephadex G-100, DEAE- and CM-Sephadex. Polyacrylamide-gel electrophoresis of the purified enzyme showed a single protein band. The molecular weight was estimated to be approximately 57,000 by gel-filtration. The purified enzyme hydrolyzed p-nitrophenyl α-d-galactoside more rapidly than raffinose. The maximal enzyme activities were obtained at pH 4.0 and 5.5 for p-nitrophenyl α-d-galactoside and at 4.5 for raffinose. The enzyme was shown to be inhibited by Hg2+ and Ag+ ions, and d-galactose.  相似文献   

19.
The 13C.n.m.r spectra of water-soluble and -insoluble glucans synthesized by enzymes isolated from six strains of Streptococcus mutans are interpreted. The glucans are shown to be composed primarily of α(1→3)- and α-(1→6)-linked glucosyl residues, and the relative abundance of each linkage is estimated from peak areas. Treatment of water-insoluble glucans with dextranase is found to result in water-soluble and -insoluble products, the former enriched in α-(1→6)-linkages and the latter in α-(1→3)-linkages. The structural conclusions arrived at by 13C-n.m.r. spectroscopy are consistent with data from methylation analysis and 1H-n.m.r. spectroscopy.  相似文献   

20.
For use in a differential assay of human α-amylases, a variety of 65-S-substituted p-nitrophenyl α-maltopentaoside derivatives (6-54) were systematically synthesized via the key intermediate, p-nitrophenyl O-(2,3-di-O-acetyl-6-S-acetyl-4-O-benzoyl-6-thio-α-D-glucopyranosyl)-(1 →4)-tris[O-(2,3,6-tri-O-acetyl-α-D-glucopyranosyl)-(1→4)]-2,3,6-tri-O-acetyl-α-D-glucopyranoside (4), which was easily prepared from p-nitrophenyl α-maltopentaoside (G5P) in four steps. The sulfoxide and sulfone derivatives were prepared by oxidizing the corresponding sulfides with m-chloroperbenzoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号