首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长期游泳运动对大鼠铁状态的影响   总被引:11,自引:0,他引:11  
目的:观察不同的运动时间对铁状态的影响。方法:大鼠随机分为3、6、12个月的三个游泳运动组和相应安静组;运动期满后观察血液学铁状态指标和器官非血红素铁(NHI)含量和NHI总含量(TNHI)的变化。结果:与安静组相比,三种不同时间长度的运动均诱导一种具有血浆铁浓度降低、血浆转铁蛋白铁饱和度降低而血红蛋白浓度和红细胞比容得到雏持的血液学低铁状态;这种低铁状态伴有肝、脾、心、肾NHI浓度显著降低,但与运动时间无关;肝、脾和肾TNHI变化与其浓度变化方向一致,但心脏没有显著变化;上述器官TNHI随时间增加而增多。结论:尽管运动诱导的低铁状态类似于铁缺乏中期表现,但由于器官NHI重分布和铁贮存并没有进行性降低,因此,长期运动引起的低铁状态可能是机体内铁代谢对运动的适应,不存在所谓“运动性铁缺乏”现象。  相似文献   

2.
The aim of the study was to investigate the effects of zinc deficiency and supplementation on lipid peroxidation and glutathione levels in blood and in some tissues of rats performing swimming exercise. Forty adult male Sprague-Dawley rats were divided into four groups: group 1, zinc-deficient consisted of swimming rats; group 2 consisted of zinc-supplemented swimming rats; groups 3 and 4 were the swimming and nonswimming controls, respectively. The levels of malondialdehyde and glutathione were measured after 4 wk of zinc-deficient or zinc-supplemented diet and 30 min of swimming exercise daily. The erythrocyte glutathione levels of groups 2 and 4 were significantly higher than those of groups 1 and 3 (p<0.01). The plasma malondialdehyde level of group 1 was significantly higher than all other groups. The glutathione levels in liver, kidney, striated muscle, and testes of group 2 were higher than in the other groups (p<0.01) and higher in kidney and striated muscle of group 3 than in groups 1 and 4 (p<0.01). The tissue malondialdehyde levels of striated muscle, liver, kidney, and testes of group 1 were significantly higher than for all other groups (p<0.01). Our findings suggest that both swimming exercise and zinc deficiency result in an increase of lipid peroxidation in tissues and that zinc supplementation prevents these alterations by the activation of the antioxidant system.  相似文献   

3.
Trace element content of different tissues might be altered by both age and exercise training. We aimed to determine the effects of a 1-yr swimming protocol (60 min/d, 5 day/wk) on tissue levels and the distribution of zinc (Zn), magnesium (Mg), and copper (Cu) in aging rats. Three groups were formed: sedentary and trained old groups and a young control group. Tissue Zn, Mg, and Cu concentrations were measured in the kidney, heart, liver, lungs, and gastrocnemius and soleus muscles. Kidney zinc concentration significantly decreased in the sedentary old group compared to the young control group (p<0.01) and was significantly higher in the trained old group compared to the sedentary old group (p<0.01), whereas Zn levels in the soleus muscle significantly increased in the sedentary old group in comparison to young controls (p<0.05). Tissue Mg concentrations remained unchanged. The sedentary old group exhibited a significant decrease in kidney Cu concentration compared to the young control group (p<0.01). Although kidney Cu levels also decreased in trained old rats in comparison to young controls (p<0.05), they were significantly higher than in sedentary old rats (p<0.01). The decrease in kidney Zn and Cu content as a result of aging was partly prevented by long-term swimming exercise.  相似文献   

4.
It is argued that melatonin secreted from the pineal gland regulates the levels of zinc, which is an important trace element. Decreases in zinc levels of pinealectomized rats supports this relationship. There is an increasing amount of evidence suggesting that the pineal gland can have important effects on physical activity. The objective of the present study was to explore the changes in serum lactate levels in pinealectomized rats subjected to acute swimming exercise and its relation with zinc. Forty adult male rats of Spraque Dawley strain were equally allocated to four groups. Group 1: General Control Group. Group 2: Pinealectomized Control Group. Group 3: Swimming Control Group. Group 4: Pinealectomized Swimming Group. Serum zinc, melatonin and lactate levels were determined in the blood samples collected from the animals by a decapitation method. Zinc and melatonin levels were higher in Group 1 than in Groups 2, 3 and 4 (p < 0.01), higher in Group 3 than in Groups 2 and 4 (p < 0.01) and higher in Group 2 than in Group 4 (p < 0.01). The highest lactate levels were found in Group 4 (p < 0.01). Lactate levels in Group 3 were higher than those in Groups 1 and 2 (p < 0.01), while the levels in Groups 1 and 2 did not differ. Pinealectomy results in a significant increase in lactate levels in rats subjected to an acute swimming exercise. This increase in lactate levels may be associated with the decrease observed in zinc levels after pinealectomy.  相似文献   

5.
目的:探究决明子水煎液复合4周游泳训练对小鼠抗疲劳能力的影响。方法:将40只雄性ICR小鼠随机分为4组,每组10只。对照组每天灌胃20 ml蒸馏水,连续4周;运动组是在对照组的基础上增加了运动干预;决明子组每天灌胃20 ml剂量为1 mg/ml的决明子水煎液;决明子运动组在决明子组的基础上增加了运动干预,运动干预为4周的无负重游泳训练。观察小鼠的力竭游泳运动时间、RMR、SOD、MDA和GSH-Px水平。采用One-Way ANOVE对所得数据进行组间比较,多重比较采用S-N-K法。结果:小鼠的RMR、SOD、MDA和GSH-Px水平在组间存在显著性差异(P<0.05),力竭游泳运动时间存在着极显著性差异(P< 0.01);力竭游泳运动时间、GSH-Px和SOD水平在不同组间的排序为对照组<运动组<决明子组<决明子运动组,MDA水平的排序为决明子运动组<决明子组<运动组<对照组,RMR的排序为决明子组<决明子运动组或对照组<对照组或运动组(P<0.05)。结论:决明子的药物作用和运动训练的刺激都能够不同程度地提高机体的抗疲劳能力,单一手段干预时决明子优于4周游泳训练,复合干预总体上优于单一手段的干预效果。  相似文献   

6.
An aqueous polyethylene glycol/salt two-phase system was used to estimate the dissociation constant, Kdis, of the Escherichia coli isoenzyme AHAS III regulatory subunit, IlvH protein, from the feedback inhibitor valine. The amounts of the bound and free radioactive valine in the system were determined. A Scatchard plot of the data revealed a 1:1 valine–protein binding ratio and Kdis of 133±14 μM. The protein did not bind leucine, and the ilvH protein isolated from a valine resistant mutant showed no valine binding. This method is very simple, rapid and requires only a small amounts of protein compared to the presently used equilibrium dialysis method.  相似文献   

7.
The branched-chain amino acids (BCAA) valine (Val) and isoleucine (Ile) are considered to be among the next-limiting amino acids for growth in piglets. In earlier studies, we estimated the standardized ileal digestible (SID) Val : Lys (lysine) requirement to be at least 70%, whereas the Ile : Lys requirement may be as low as 50%. Because the BCAA partially share a common route of catabolism, the supply of one BCAA may affect the availability of the other BCAA. Four experiments were conducted to determine the response of 6-week-old piglets to the Val supply in relation to the other BCAA. A deficient supply of Val or Ile typically results in a reduction in average daily feed intake (ADFI). Experiment 1 was designed to determine the effect of a limiting Val supply, independent of the effect on feed intake. In a dose-response study using restrictively fed piglets, nitrogen retention did not increase for an SID Val : Lys supply greater than 64%. In the remaining experiments, piglets were offered feed ad libitum using ADFI, average daily gain (ADG) and gain-to-feed ratio as response criteria. The interaction between the Val and leucine (Leu) was studied in Experiment 2 in a 2 × 2 factorial design (60% and 70% SID Val : Lys, and 111% and 165% SID Leu : Lys). Performance was considerably lower in piglets receiving 60% Val : Lys compared with those receiving 70% Val : Lys and was lowest in piglets receiving the diet with low Val and high Leu content. To further evaluate the interaction between Val and Leu, a dose-response study was carried out in which the response to Val supply was studied in combination with high Leu supply (165% Leu : Lys). Using a curvilinear-plateau model, the average SID Val : Lys requirement was 72%. However, low Val supply (60% SID Val : Lys) reduced performance by 13% to 38%, which was much greater than what we observed in earlier studies. Experiment 4 was carried out to test the hypothesis that the Val requirement is not affected by low Ile supply (50% SID Ile : Lys). Performance was not improved for Val : Lys supplies greater than 65%, which may indicate that Ile (and not Lys) was second-limiting in this study. In conclusion, the first response of piglets to deficient Val supply appears to be a reduction in ADFI, rather than a reduction in ADG or nitrogen retention. A large supply of Leu may not affect the Val requirement per se, but may aggravate the consequences of Val deficiency.  相似文献   

8.
支链氨基酸在运动中的作用研究进展   总被引:1,自引:0,他引:1  
支链氨基酸(BCAAs)由亮氨酸、异亮氨酸和缬氨酸组成,是人体重要的必需氨基酸,参与人体多种生理活动。本文在大量查阅相关文献的基础上,就支链氨基酸在运动中的作用进行述评。支链氨基酸在运动中能够为机体提供能量,通过参与糖代谢过程而维持糖原含量;可调节蛋白质的代谢过程,抑制蛋白质降解并促进合成代谢;抑制自由基和乳酸的产生并加快其廓清速率,保护细胞膜与线粒体的生物功能,减缓抑制性神经递质的生成与集聚。在对抗运动性疲劳、提高运动能力和削弱延迟性肌肉酸痛方面有巨大影响。但关于长期补充支链氨基酸的毒副作用、不良效应等问题,仍有待进一步研究与探索。  相似文献   

9.
Deminice R  Jordao AA 《Amino acids》2012,43(2):709-715
The objective of this study was to evaluate the effect of creatine supplementation on muscle and plasma markers of oxidative stress after acute aerobic exercise. A total of 64 Wistar rats were divided into two groups: control group (n = 32) and creatine-supplemented group (n = 32). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1-h swimming with 4% of total body weight load). The animals were killed before (pre) and at 0, 2 and 6 h (n = 8) after acute exercise. As expected, plasma and total muscle creatine concentrations were significantly higher (P < 0.05) in the creatine-supplemented group compared to control. Acute exercise increased plasma thiobarbituric acid reactive species (TBARS) and total lipid hydroperoxide. The same was observed in the soleus and gastrocnemius muscles. Creatine supplementation decreased these markers in plasma (TBARS: pre 6%, 0 h 25%, 2 h 27% and 6 h 20%; plasma total lipid hydroperoxide: pre 38%, 0 h 24%, 2 h 12% and 6 h 20%, % decrease). Also, acute exercise decreased the GSH/GSSG ratio in soleus muscle, which was prevented by creatine supplementation (soleus: pre 8%, 0 h 29%, 2 h 30% and 6 h 44%, % prevention). The results show that creatine supplementation inhibits increased oxidative stress markers in plasma and muscle induced by acute exercise.  相似文献   

10.
Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 (n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 ± 0.32 to 7.90 ± 0.17 mm), systolic volume (49 ± 7 to 83 ± 11 μl) and cardiac output (75 ± 3 to 107 ± 8 ml/min) but not left wall thickness in diastole (1.74 ± 0.07 to 1.80 ± 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 ± 1.1 to 19.1 ± 0.3) and reduced purine efflux during pacing-induced workload increases. 31P-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function. (Mol Cell Biochem 251: 51–59, 2003)  相似文献   

11.
12.
Several studies have reported the gastrointestinal (GI) effects promoted by the physical exercise. Thus, we aimed to evaluate the influence of swimming exercise on the contractile reactivity, lipid peroxidation and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and groups exercised for two (EX2), four (EX4), six (EX6) or eight (EX8) weeks, 5 days/week. Animals were killed; the ileum was removed and suspended in organ baths where the isotonic contractions were recorded. Lipid peroxidation was evaluated by MDA (malondialdehyde) measurement with TBARS (thiobarbituric acid reactive substances) assay and morphology by histological staining. Cumulative concentration-response curves to KCl were attenuated, as the Emax values were changed from 100% (SED) to 63.1±3.9 (EX2), 48.8±3.8 (EX4), 19.4±1.8 (EX6) and 59.4±2.8% (EX8). Similarly, cumulative concentration-response curves to carbamylcholine hydrochloride (CCh) were attenuated, as the Emax values were changed from 100% (SED) to 74.1±5.4 (EX2), 75.9±5.2 (EX4) and 62.9±4.6 (EX6), but not in the EX8 (89.7±3.4%). However, CCh potency was increased in this latter, as the EC50 was altered from 1.0±0.1×10−6 (SED) to 2.1±0.4×10−7 (EX8). MDA concentration was altered only in EX4 (44.3±4.4) compared with SED (20.6±3.6 μmol/l). Circular layer was reduced in SED when compared with the exercised groups. Conversely, longitudinal layer was increased. In conclusion, chronic swimming exercise reduces the ileum contraction, equilibrates the oxidative damage and promotes changes in tissue size to establish an adaptation to the exercise.  相似文献   

13.
Summary. Branched chain amino acids (BCAA) stimulate protein synthesis, and growth hormone (GH) is a mediator in this process. A pre-exercise BCAA ingestion increases muscle BCAA uptake and use. Therefore after one month of chronic BCAA treatment (0.2 g kg−1 of body weight), the effects of a pre-exercise oral supplementation of BCAA (9.64 g) on the plasma lactate (La) were examined in triathletes, before and after 60 min of physical exercise (75% of VO2max). The plasma levels of GH (pGH) and of growth hormone binding protein (pGHBP) were also studied. The end-exercise La of each athlete was higher than basal. Furthermore, after the chronic BCAA treatment, these end-exercise levels were lower than before this treatment (8.6 ± 0.8 mmol L−1 after vs 12.8 ± 1.0 mmol L−1 before treatment; p < 0.05 [mean ± std. err.]). The end-exercise pGH of each athlete was higher than basal (p < 0.05). Furthermore, after the chronic treatment, this end-exercise pGH was higher (but not significantly, p = 0.08) than before this treatment (12.2 ± 2.0 ng mL−1 before vs 33.8 ± 13.6 ng mL−1 after treatment). The end-exercise pGHBP was higher than basal (p < 0.05); and after the BCAA chronic treatment, this end-exercise pGHBP was 738 ± 85 pmol L−1 before vs 1691 ± 555 pmol L−1 after. pGH/pGHBP ratio was unchanged in each athlete and between the groups, but a tendency to increase was observed at end-exercise. The lower La at the end of an intense muscular exercise may reflect an improvement of BCAA use, due to the BCAA chronic treatment. The chronic BCAA effects on pGH and pGHBP might suggest an improvement of muscle activity through protein synthesis. Received January 5, 1999 / Accepted June 17, 1999  相似文献   

14.
目的:探索少年足球运动员在运动性疲劳后的差异代谢物变化。方法:以12名男性少年足球运动员(14~16岁)为试验对象,用功率自行车建立包含有氧运动和无氧运动的训练模型:完成6 min 150 W负荷、60~65r/min的踏骑运动和30 s的负荷按照测试者体重而设定的最大速度踏骑运动,中间休息1 min,重复运动3组,组间休息3 min;测定运动员每组运动后的最大摄氧量值和平均无氧功率值,采集运动训练前后的尿液样本,利用气相-质谱联用(GC-MS)法检测尿液样本,通过数据库筛选潜在的差异代谢物。结果:与运动前相比较,少年足球运动员运动疲劳后的平均无氧功率显著下降(P<0.05),筛选出25个差异代谢物,其中3个代谢物显著升高(P<0.05,0.01),22个代谢物显著降低(P<0.05,0.01);上述差异代谢物的相关代谢通路归属为甘氨酸-丝氨酸-苏氨酸代谢、三羧酸循环、酪氨酸代谢、氮代谢和甘油磷酯代谢通路。结论:少年足球运动员发生运动性疲劳后,机体的代谢物:肌氨酸、L-别苏氨酸、肌酸、丝氨酸、琥珀酸、柠檬酸、4-羟基苯乙酸、羟胺和乙醇胺产生明显的变化,上述差异代谢物可...  相似文献   

15.
目的:研究短期和长期运动预适应对心肌细胞凋亡保护中发挥的作用及机制。方法:48只雄性SD大鼠随机分为对照组(C)、力竭组(E)、短期运动预适应组(S-EP)、长期运动预适应组(L-EP)。短期和长期运动预适应分别进行3 d和3周的反复间歇游泳训练方案。光镜下观察心肌细胞的结构改变;ELISA方法检测血清中缺血修饰白蛋白(IMA)、磷酸肌酸同工酶(CK-MB)含量;实时荧光定量PCR和Western blot方法检测心肌组织中TNF-α、Caspase-8、Caspase-3基因和蛋白表达;采用DNA原位末端标记(TUNEL)法观察心肌细胞的凋亡情况。结果:与C组相比,E组心肌细胞损伤严重,血清IMA、CK-MB含量及心肌组织中TNF-α、Caspase-8、Caspase-3 mRNA和蛋白表达升高(P<0.05);与E组相比,S-EP组血清CK-MB及心肌TNF-α、Caspase-8mRNA明显降低(P<0.05),而蛋白表达无统计学差异,血清IMA及Caspase-3 mRNA和蛋白均下降不明显,无统计学意义(P>0.05),L-EP组血清IMA、CK-MB含量及心肌TNF-α、Caspase-8、Caspase-3 mRNA及蛋白明显降低,有统计学意义(P<0.05);与S-EP组相比,L-EP组血清IMA、CK-MB含量及TNF-α、Caspase-8、Caspase-3 mRNA和蛋白明显下降,有统计学意义(P<0.05)。E组心肌细胞凋亡明显,S-EP组和L-EP组均能抑制凋亡,且L-EP组与S-EP组相比心肌凋亡明显减少。结论:短期和长期运动预适应均可减轻力竭后的心肌损伤,但短期运动预适应并未改变Caspase蛋白酶的表达,长期运动预适应明显抑制Caspase-8、3 mRNA表达,减少蛋白合成,从而发挥心肌保护效应,故长期运动预适应在抑制心肌细胞凋亡方面较短期运动预适应更强。  相似文献   

16.
This study investigated the effects of antioxidant vitamin supplementation upon muscle contractile function following eccentric exercise and was performed double blind. Twenty-four physically active young subjects ingested either placebo (400 mg; n = 8), vitamin E (400 mg; n=8) or vitamin C (400 mg; n = 8) for 21 days prior to and for 7 days after performing 60 min of box-stepping exercise. Contractile function of the triceps surae was assessed by the measurement of maximal voluntary contraction (MVC) and the ratio of the force generated at 20 Hz and 50 Hz tetanic stimulation before and after eccentric exercise and for 7 days during recovery. Following eccentric exercise, MVC decreased to 75 (4) % [mean (SE); n = 24; P < 0.05] of the preexercise values and the 20/50 Hz ratio of tetanic tension from 0.76 (0.01) to 0.49 (0.03) [mean (SE); n = 24; P<0.05). Compared to the placebo group no significant changes in MVC were observed immediately post-exercise, though recovery of MVC in the first 24 h post-exercise was greater in the group supplemented with vitamin C. The decrease in 20/50 Hz ratio of tetanic tension was significantly less (P < 0.05) post-exercise and in the initial phase of recovery in subjects supplemented with vitamin C but not with vitamin E. These data suggest that prior vitamin C supplementation may exert a protective effect against eccentric exercise-induced muscle damage.  相似文献   

17.
18.
19.
The acute cardiorespiratory responses of spontaneously hypertensive rats (SHR) to swimming and running exercise was investigated because SHR populations are hyperresponsive to external stimuli, of the paucity of existing data, and of the uncertainty on the role of exercise stimuli for training adaptations to occur. Male rats were assigned to one of five groups (n = 5-6/group) and designated as controls (C), inexperienced or naive free swimmers (NFS), experienced free swimmers (FS), experienced weighted swimmers (WS) (attached weights equal to 2% of their body weight) or experienced runners (R) who ran at an intensity of 75% of their VO2max. After 75 min in the water, all groups were acidotic and hypercapnic with the WS experiencing the greatest changes. Heart rate (HR) was increased in all swimmers during the initial 10 min, but declined thereafter, and after 75 min, the HR of WS (348 +/- 1 beats/min) was significantly lower than the C group (416 +/- 22 beats/min). At the same time interval, mean arterial blood pressure (MAP) was decreased in all swimming groups to values lower than the C animals. In addition, an exaggerated diving reflex was frequently noted when the rats were submerged. When the magnitudes of the changes were evaluated in the swimming animals they were directly associated with their submergence times, i.e., during 65-75 min of the swim, NFS, FS, and WS were submerged for 43, 46, and 66% of their total swim time, respectively. In sharp contrast to the swimmers, the runners exhibited increases in HR and MAP with their blood gas measurements being indicative of hyperventilation. We concluded that swimming as an exercise mode for hypertensive rats is best served to study the combined effects of excitement, prolonged submergence, and the consequences of the diving reflex.  相似文献   

20.
Summary The effect of fatigue (running to exhaustion) on the Vmax activity of the key glycolytic enzymes measured at saturating substrate concentrations in muscles, liver and brain of sedentary and trained (running on a treadmill one h/day at 20 m/min, five days/week for six months) female Zucker fatty rats and their lean littermates was investigated. In the sedentary rats, fatigue increased the activity of phosphofructokinase (PFK) in the red vastus muscle by 82% in lean, and 120% in obese rats. In the trained rats, fatigue increased PFK activity by 28% in the white vastus muscle of lean rats. In the lean animals, hexokinase (HK) activity was decreased by 26% in the red vastus of sedentary rats, and by 29% in the white vastus of trained rats upon fatiguing. Pyruvate kinase (PK) activity was also decreased by 29% in the white vastus of fatigued lean animals. Training by itself had no effect on the activity of glycolytic enzymes, except PK activity which was increased by 27% in the cortex of the lean animals. It is concluded that in the Zucker rat, these glycolytic enzymes may play a differential role in regulating glycolysis during exercise and fatigue; the extent of their involvement differs depending upon the type of tissue studied and exercise. In view of the reported short half-life (7–17 h) of PFK and its covalent modification, it is suggested that the total content and/or phosphorylation status of the enzyme may be affected in animals subjected to long-term fatigue.Abbreviations PFK Phosphofructokinase (EC 2.7.1.11) - PK Pyruvate Kinase (EC 2.7.1.40) - HK Hexokinase (EC 2.7.1.1) - LSC Lean Sedentary Control - LTC Lean Trained Control - LSF Lean Sedentary Fatigued - LTF Lean Trained Fatigued - OSC Obese Sedentary Control - OTC Obese Trained Control - OSF Obese Sedentary Fatigued - OTF Obese Trained Fatigued  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号