首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to design and optimize a transdermal liposomes gel formulation for paeonol (PAE). A three-factor, three-level Box-Behnken design was used to derive a second-order polynomial equation to construct three-dimensional (3-D) contour plots for prediction of responses. Independent variables studied were the DC-Chol concentration (X1), molar ratio of lipid/drug (X2), and the polymer concentration (X3), and the levels of each factor were low, medium, and high. The dependent variables studied were the encapsulation efficiency (%EE) of PAE (Y1), flux of PAE (Y2), and viscosity of the gels (Y3). Response surface plots were drawn and statistical validity of the polynomials was established to find the compositions of optimized formulation, which was evaluated using the Franz diffusion cell. The %EE of PAE increased proportionally with the molar ratio of lipid/drug, but decreased with polymer concentration, whereas the flux of PAE increased proportionally with polymer concentration and the DC-Chol concentration. The viscosity of gels increased with the polymer concentration. Gels showed a non-Fickian diffusion release mechanism for PAE, and the in vitro release profiles were fit for Higuchi’s order model. The design demonstrated the role of the derived polynomial equation and 3-D contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation for transdermal drug release.  相似文献   

2.
The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 ± 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 ± 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.  相似文献   

3.
The efficacy and toxicity of free and liposome intercalated amphotericin-B (Amp-B) in controlling Aspergillosis, caused byAspergillus fumigatus in BALB/c mice were studied. Liposomal Amp-B had higher LD50 (8.1 mg/kg) as compared to that of the free drug (1.2 mg/kg). An improvement in the therapeutic index of the drug was observed with liposomal formulation of the drug. We also focussed on the effect of lipid composition and surface sugar in modulating the therapeutic potency of Amp-B. The most effective liposomal preparation was composed of egg phosphatidylcholine (EPC) : L--phosphatidylethanolamine, dipalmitoyl (DPPE): cholesterol (Chol) in the molar ratio of 6:1:3. Amp-B intercalated into mannose grafted liposomes (LD50 = 9.3 mg/kg) was more effective as compared to the other formulation tested.  相似文献   

4.
The purpose of this study was to investigate the combined influence of three-level, three-factor variables on the formulation of dacarbazine (a water-soluble drug) loaded cubosomes. Box–Behnken design was used to obtain a second-order polynomial equation with interaction terms to predict response values. In this study, the selected and coded variables X1, X2, and X3 representing the amount of monoolein, polymer, and drug as the independent variables, respectively. Fifteen runs of experiments were conducted, and the particle size (Y1) and encapsulation efficiency (Y2) were evaluated as dependent variables. We performed multiple regression to establish a full-model second-order polynomial equation relating independent and dependent variables. A second-order polynomial regression model was constructed for Y1 and confirmed by performing checkpoint analysis. The optimization process and Pareto charts were obtained automatically, and they predicted the levels of independent coded variables X1, X2, and X3 (−1, 0.53485, and −1, respectively) and minimized Y1 while maximizing Y2. These corresponded to a cubosome formulation made from 100 mg of monoolein, 107 mg of polymer, and 2 mg with average diameter of 104.7 nm and an encapsulation efficiency of 6.9%. The Box–Behnken design proved to be a useful tool to optimize the particle size of these drug-loaded cubosomes. For encapsulation efficiency (Y2), further studies are needed to identify appropriate regression model.Key words: Box–Behnken design, cubosomes, dacarbazine, formulation variables  相似文献   

5.
The purpose of this study was to investigate the combined influence of three-level, three-factor variables on the formulation of dacarbazine (a water-soluble drug) loaded cubosomes. Box–Behnken design was used to obtain a second-order polynomial equation with interaction terms to predict response values. In this study, the selected and coded variables X 1, X 2, and X 3 representing the amount of monoolein, polymer, and drug as the independent variables, respectively. Fifteen runs of experiments were conducted, and the particle size (Y 1) and encapsulation efficiency (Y 2) were evaluated as dependent variables. We performed multiple regression to establish a full-model second-order polynomial equation relating independent and dependent variables. A second-order polynomial regression model was constructed for Y 1 and confirmed by performing checkpoint analysis. The optimization process and Pareto charts were obtained automatically, and they predicted the levels of independent coded variables X 1, X 2, and X 3 (−1, 0.53485, and −1, respectively) and minimized Y 1 while maximizing Y 2. These corresponded to a cubosome formulation made from 100 mg of monoolein, 107 mg of polymer, and 2 mg with average diameter of 104.7 nm and an encapsulation efficiency of 6.9%. The Box–Behnken design proved to be a useful tool to optimize the particle size of these drug-loaded cubosomes. For encapsulation efficiency (Y 2), further studies are needed to identify appropriate regression model.  相似文献   

6.
A novel liposomal formulation was developed for the encapsulation of the oligopeptide leuprolide (GlpHisTrpSerTyr-D-LeuLeuArgProNHEt), a potent analogue of gonadotropin releasing hormone used in the treatment of advanced prostate cancer, endometriosis and precocious puberty. Leuprolide was synthesized using solid phase methodology on a {3-[(ethyl-Fmoc-amino)-methyl]-1-indol-1-yl}-acetyl AM resin and Fmoc/tBu chemistry. The new liposomal formulation, called 'liposomes in liposomes' is composed of egg phosphatidylcholine:dipalmitoylphosphatidylglycerol in a molar ratio of 98.91:1.09 (internal liposomes) and egg phosphatidylcholine:dipalmitoylphosphatidylglycerol:cholesterol in a molar ratio of 68.71:0.76:30.53 (external liposomes). It offers high encapsulation efficiency (73.8% for leuprolide); it can provide new delivery characteristics and it may have possible advantages in future applications regarding the encapsulation and delivery of bioactive peptides to target tissues. Furthermore, the physicochemical characteristics (size distribution and zeta-potential) of the liposomal formulations and the thermal effects on leuprolide in model lipidic bilayers composed of dipalmitoylphosphatidylcholine were studied using differential scanning calorimetry. Finally, the dynamic effects of leuprolide in an egg phosphatidylcholine/cholesterol system were examined using solid state 13C MAS NMR spectroscopy.  相似文献   

7.
Liposomes are widely used vehicles for the delivery of bioactive molecules. They are composed mainly from acyl-phosphatidylcholines, cholesterol, and charged lipids (e.g., stearylamine, dipalmitoylphosphatidylglycerol (DPPG), phosphatidylethanolamine).

The incorporation efficiencies of the bioactive molecule and the drug to lipid molar ratio are important factors for the assessment of the liposomal formulation. In order to successfully characterize a liposomal formulation, it is necessary to be able to accurately measure the lipids and the encapsulated molecule, using the smallest possible sample.

The present work describes an analytical methodology on qualitative and quantitative determination of all the lipid ingredients that are involved in the liposome formulation, as well as the drug incorporation and the drug–lipid ratio, by a simultaneous measurement of all the liposomal ingredients using thin-layer chromatography coupled with a flame ionization detector (HPTLC/FID).

The procedure requires only one measurement per sample, and it can be applied even in very small or much diluted samples.

The proposed analytical method can be applied in general on all steps of the development of liposomal formulations. The purity and stability of the raw materials can also be easily evaluated. In addition the preparation procedure can be tracked in order to locate possible losses of raw material and errors of the preparation method resulting in the amelioration of the method.  相似文献   

8.
The present studies were focused on the preparation and characterization of stericaly stabilized liposomes (SLs) encapsulating a recombinant organophosphorus hydrolyzing phosphotriesterase (OPH) enzyme for the antagonism of organophosphorus intoxication. Earlier results indicate that the liposomal carrier system provides an enhanced protective effect against the organophosphorus molecule paraoxon, presenting a more effective therapy with less toxicity than the most commonly used antidotes. Physicochemical characterization of the liposomal OPH delivery system is essential in order to get information on its in vitro stability and in vivo fate. Osmolarity, pH, viscosity, and encapsulation efficiency of the SL preparation and the surface potential of the vesicles were determined. The membrane rigidity and the impact of OPH enzyme on it was studied by electron-paramagnetic resonance spectroscopy, using spin probes. The in vitro stability of the liposomal preparations, the vesicle size distribution, and its alteration during a 3-week storage were followed by dynamic light-scattering measurements. Further, the stability of encapsulated and nonencapsulated OPH was compared in puffer and plasma.  相似文献   

9.
The aim was to develop a liposomal oxymatrine conjugating d-alpha tocopheryl polyethylene glycol 1000 succinate (OMT-LIP) for enhanced therapeutics of hepatic fibrosis. OMT-LIP was prepared using the remote loading method. The influences of formulation compositions on the encapsulation efficiency of OMT-LIP were investigated. Mean particle size, zeta potential, morphology, in vitro release, fibrotic liver targeting, and therapeutics of OMT-LIP were thoroughly assessed. The intraliposomal buffer composition and concentration, extraliposomal phase composition and pH, types of phospholipid, lipid molar ratio composition, and theoretical drug loading are crucial factors to entrap OMT into liposomes. The optimum OMT-LIP presented spherically unilamellar microstructures with entrapment efficiency of 79.7 ± 3.9%, mean particle size of 121.6 ± 52.9 nm, and zeta potential of −5.87 mV. OMT-LIP significantly increased the accumulation of OMT in the fibrotic liver with an 11.5-fold greater AUC than OMT solution in the dimethylnitrosamine (DMN)-induced hepatic fibrosis animals. OMT-LIP could be a potential strategy to improve treatment outcomes for hepatic fibrosis, showing the protective effects to mice given CCl4 and the enhanced therapeutics to mice with either DMN or CCl4-induced hepatic fibrosis.KEY WORDS: fibrotic liver targeting, hepatic fibrosis, liposomes, oxymatrine, therapeutics  相似文献   

10.
The activity of tyrosine phenol-layse a chemotherapeutic enzyme with a dissociable pyridoxal phosphate cofactor, was studied after incorporation into multilamellar positively charged liposomes. Tyrosine phenol-lyase activity was assessed in the presence and absence of exogenous pyridoxal phosphate. A maximum of 75% total enzyme activity was associated with liposomes when prepared from a molar lipid ratio of egg lecithin, cholesterol, stearylamine (7 : 2 : 1, w/w). The total tyrosine phenol-lyase activity was comprised of 25% membrane-associated enzyme and 50% encapsulated enzyme. Encapsulation increased the stability of the enzyme under the in vitro conditions of cold storage at 4°C for 3 weeks and under elevated temperatures up to 61°C. Liposomal encapsulation afforded little protection against trypsin and no protection against whole mouse plasma in vitro. Heat-treated plasma (100°C for 1 h) had little effect on the activity of free and encapsulated tyrosine phenol-lyase. These results indicated that whole plasma contained a heat-labile factor(s) which destroyed both the liposomal and free tyrosine phenol-lyase activity. Plasma clearance after intraperitoneal injection of tyrosine phenol-lyase in B6D2F1 female mice was reduced by liposomal encapsulation, particularly when the animals were pre-treated with empty liposomes; however, only a small proportion of free and liposomal tyrosine phenol-lyase was absorbed. The free enzyme rapidly lost holoenzyme activity after absorption but the liposomes maintained holoenzyme activity. Even though liposomes preserved holo-tyrosine phenol-lyase activity, the holoenzyme was not present in sufficient concentration to sustain a reduced plasma tyrosine level.  相似文献   

11.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 °C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

12.
Abstract

A novel method for the production of non-ionic surfactant vesicles (niosomes) using an rapid expansion of supercritical solution (RESS)-based process coupled with a gas ejector is presented along with an investigation of parameters affecting niosome morphology, size and encapsulation efficiency of a 0.2?M d-glucose solution in Tris buffer at physiological pH. The solubility of the non-ionic surfactant polyoxyethylene(4) sorbitan monostearate in SC-CO2 was determined at three pressures (10, 15 and 20?MPa) and three temperatures (40, 50 and 60?°C). Mole fraction of Tween61 in the vapor phase increased with pressure at 40?°C, but did not change with pressure at 50 or 60?°C. Solubility data were correlated using the Peng–Robinson equation of state (PREOS) with the Panagiotopoulos and Reid mixing rule. Vesicles were either multilamellar or unilamellar, depending on the degree of precipitation of the lipid formulation at the point of aqueous cargo introduction. Vesicle particle size distributions were bimodal, with the 80–99% of the liposomal volume contributed niosomes ranging in size from 3 to 7?μm and the remaining niosomes ranging from 239 to 969?nm, depending on the system configuration. Encapsulation efficiency as high as 28% using the gas ejector to introduce the glucose cargo solution was achieved. Vesicle particle size and encapsulation efficiency were shown to be dependent on cargo droplet formation.  相似文献   

13.
Cisplatin, first (platinum) compound to be evolved as an anticancer agent, has found its important place in cancer chemotherapy. However, the dose-dependent toxicities of cisplatin, namely nephrotoxicity, ototoxicity, peripheral neuropathy, and gastrointestinal toxicity hinder its widespread use. Liposomes can reduce the toxicity of cisplatin and provide a better therapeutic action, but the low lipid solubility of cisplatin hinders its high entrapment in such lipid carrier. In the present investigation, positively charged reactive aquated species of cisplatin were complexed with negatively charged caprylate ligands, resulting in enhanced interaction of cisplatin with lipid bilayer of liposomes and increase in its encapsulation in liposomal carrier. Prepared cisplatin liposomes were found to have a vesicular size of 107.9 ± 6.2 nm and zeta potential of −3.99 ± 3.45 mV. The optimized liposomal formulation had an encapsulation efficiency of 96.03 ± 1.24% with unprecedented drug loading (0.21 mg cisplatin / mg of lipids). The in vitro release studies exhibited a pH-dependent release of cisplatin from liposomes with highest release (67.55 ± 3.65%) at pH 5.5 indicating that a maximum release would occur inside cancer cells at endolysosomal pH. The prepared liposomes were found to be stable in the serum and showed a low hemolytic potential. In vitro cytotoxicity of cisplatin liposomes on A549 lung cancer cell line was comparable to that of cisplatin solution. The developed formulation also had a significantly higher median lethal dose (LD50) of 23.79 mg/kg than that of the cisplatin solution (12 mg/kg). A promising liposomal formulation of cisplatin has been proposed that can overcome the disadvantages associated with conventional cisplatin therapy and provide a higher safety profile.Key Words: cisplatin, complexation, cytotoxicity, LD50, liposome  相似文献   

14.
Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4?>?lipid1?>?lipid2?>?lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (?Gbinding?=??2.17 and ?11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation ability, drug release and further development of novel liposome-based pH-responsive nano-drug delivery system with refined structural and chemical features of potential lipid molecule for formulation development.  相似文献   

15.
This study describes the encapsulation of the local anaesthetic lidocaine (LDC) in large unilamellar liposomes (LUV) prepared in a scalable procedure, with hydrogenated soybean phosphatidylcholine, cholesterol and mannitol. Structural properties of the liposomes were assessed by dynamic light scattering, nanoparticle tracking analysis and transmission electron microscopy. A modified, two-compartment Franz-cell system was used to evaluate the release kinetics of LDC from the liposomes. The in vivo anaesthetic effect of liposomal LDC 2% (LUVLDC) was compared to LDC 2% solution without (LDCPLAIN) or with the vasoconstrictor epinephrine (1:100 000) (LDCVASO), in rat infraorbital nerve blockade model. The structural characterization revealed liposomes with spherical shape, average size distribution of 250?nm and low polydispersity even after LDC incorporation. Zeta potential laid around –30?mV and the number of suspended liposomal particles was in the range of 1012 vesicles/mL. Also the addition of cryoprotectant (mannitol) did not provoke structural changes in liposomes properties. In vitro release profile of LDC from LUV fits well with a biexponential model, in which the LDC encapsulated (EE%?=?24%) was responsible for an increase of 67% in the release time in relation to LDCPLAIN (p?<?0.05). Also, the liposomal formulation prolonged the sensorial nervous blockade duration (~70?min), in comparison with LDCPLAIN (45?min), but less than LDCVASO (130?min). In this context, this study showed that the liposomal formulations prepared by scalable procedure were suitable to promote longer and safer buccal anaesthesia, avoiding side effects of the use of vasoconstrictors.  相似文献   

16.
This study investigated the utility of a 23 factorial design and optimization process for polylactic-co-glycolic acid (PLGA) nanoparticles containing itraconazole with 5 replicates at the center of the design. Nanoparticles were prepared by solvent displacement technique with PLGAX 1 (10, 100 mg/mL), benzyl benzoateX 2 (5, 20 μg/mL), and itraconazoleX 3 (200, 1800 μg/mL). Particle size (Y 1), the amount of itraconazole entrapped in the nanoparticles (Y 2), and encapsulation efficiency (Y 3) were used as responses. A validated statistical model having significant coefficient figures (P<.001) for the particle size (Y 1), the amount of itraconazole entrapped in the nanoparticles (Y 2), and encapsulation efficiency (Y 3) as function of the PLGA (X 1), benzyl benzoate (X 2), and itraconazole (X 3) were developed: Y1=373.75+66.54X1+52.09X2+105.06X3−4.73X1X2+46.30X1X3; Y2=472.93+73.45X1+ 169.06X2+333.03X3+62.40X1X3+141.49X2X3; Y3= 57.36+6.53X1+15.52X2−12.59X3+1.01X1X3+ 1.73X2X3.X 1,X 2, andX 3 had a significant effect (P<.001) onY 1,Y 2, andY 3. The particle size, the amount of itraconazole entrapped in the nanoparticles, and the encapsulation efficiency of the 4 formulas were in agreement with the predictions obtained from the models (P<.05). An overlay plot for the 3 responses shows the boundary in whichY 1 shows the boundary in which a number of combinations of concentration of PLGA, benzyl benzoate, and itraconazole will result in a satisfactory process. Using the desirability approach with the same constraints, the solution composition having the highest overall desirability (D=0.769) was 10 mg/mL of PLGA, 16.94 μg/mL of benzyl benzoate, and 1001.01 μg/mL of itraconazole. This approach allowed the selection of the optimum formulation ingredients for PLGA nanoparticles containing itraconazole of 500 μg/mL.  相似文献   

17.
A liposomal preparation of glutathione (GSH) was investigated for its ability to replenish intracellular GSH and provide neuroprotection in an in vitro model of Parkinson’s disease using paraquat plus maneb (PQMB) in rat mesencephalic cultures. In mixed neuronal/glial cultures depleted of intracellular GSH, repletion to control levels occurred over 4 h with liposomal-GSH or non-liposomal-GSH however, liposomal-GSH was 100-fold more potent; EC50s 4.75 μM and 533 μM for liposomal and non-liposomal-GSH, respectively. Liposomal-GSH utilization was also observed in neuronal cultures, but with a higher EC50 (76.5 μM), suggesting that glia facilitate utilization. Blocking γ-glutamylcysteine synthetase with buthionine sulfoxamine prevented replenishment with liposomal-GSH demonstrating the requirement for catabolism and resynthesis. Repletion was significantly attenuated with endosomal inhibition implicating the endosomal system in utilization. Liposomal-GSH provided dose-dependent protection against PQMB with an EC50 similar to that found for repletion. PQMB depleted intracellular GSH by 50%. Liposomal-GSH spared endogenous GSH during PQMB exposure, but did not require GSH biosynthesis for protection. No toxicity was observed with the liposomal preparation at 200-fold the EC50 for repletion. These findings indicate that glutathione supplied in a liposomal formulation holds promise as a potential therapeutic for neuronal maintenance.  相似文献   

18.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 degrees C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

19.
Phosphorus deficiency in citrus leaves resulted in reduced glutamic-oxaloacetic transaminase (GOT) activity and low pyridoxal-phosphate (PLP) content. GOT activity was estimated in crude enzyme extracts by spectrophotometry PLP content was detected colorimetrically in water-alcoholic extracts. K and Cu deficiencies increased; -N, -S and -Zn decreased and -Mg, -Fe and -Mn did not affect GOT activity in citrus leaves. Experiments were conducted to restore enzyme activity either by direct addition of PLP to the reaction mixture or by infiltration of PLP or KH2PO4 to detached, intact leaves. The infiltration was carried out in vacuo and the leaves were incubated on wet paper for 26 h, after which enzyme activity was estimated. Transamination activity of -P leaves more restored by PLP than by KH2PO4 treatments. In zinc-deficient leaves the enzyme activity was not restored by infiltration of KH2PO4.  相似文献   

20.
ABSTRACT

Multi-drug resistance due in part to membrane pumps such as P-glycoprotein (Pgp) is a major clinical problem in human cancers. We tested the ability of liposomally-encapsulated daunorubicin (DR) to overcome resistance to this drug. A widely used breast carcinoma cell line originally selected for resistance in doxorubicin (MCF7ADR) was 4-fold resistant to DR compared to the parent MCF7 cells (IC50 79 nM vs. 20 nM). Ovarian carcinoma cells (SKOV3) were made resistant by retroviral transduction of MDR1 cDNA and selection in vinblastine. The resulting SKOV3MGP1 cells were 130-fold resistant to DR compared to parent cells (IC50 5700 nM vs. 44 nM). Small-cell lung carcinoma cells (H69VP) originally selected for resistance to etoposide were 6-fold resistant to DR compared to H69 parent cells (IC50 180 nM vs. 30 nM). In all three cases, encapsulation of DR in liposomes as Daunoxome (Gilead) did not change the IC50 of parent cells relative to free DR. However, liposomal DR overcame resistance in MCF7ADR breast carcinoma cells (IC50 20 nM), SKOV3MGP1 ovarian carcinoma cells (IC50 237 nM) and H69VP small-cell lung carcinoma cells (IC50 27 nM). Empty liposomes did not affect the IC50 for free DR in the three resistant cell lines, nor did empty liposomes affect the IC50 for other drugs that are part of the multi-drug resistance phenotype (etoposide, vincristine) in lung carcinoma cells. These data indicate the possible value of liposomal DR in overcoming Pgp-mediated drug resistance in human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号