首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of brain microtubule protein from patients with Alzheimer's disease showed decreased alpha tubulin levels along with increased acetylation of the alpha tubulin subunit, mainly in those microtubules from neurons containing neurofibrillary tau pathology. To determine the relationship of tau protein and increased tubulin acetylation, we studied the effect of tau on the acetylation-deacetylation of tubulin. Our results indicate that tau binds to the tubulin-deacetylase, histone deacetylase 6 (HDAC6), decreasing its activity with a consequent increase in tubulin acetylation. As expected, increased acetylation was also found in tubulin from wild-type mice compared with tubulin from mice lacking tau because of the tau-mediated inhibition of the deacetylase. In addition, we found that an excess of tau protein, as a HDAC6 inhibitor, prevents induction of autophagy by inhibiting proteasome function.  相似文献   

2.
In conditions of proteasomal impairment, the damaged or misfolded proteins, collectively known as aggresome, can accumulate in the perinuclear space and be subsequently eliminated by autophagy. Abnormal aggregation of microtubule-associated protein tau in the cytoplasm is a common neuropathological feature of tauopathies. The deficiency in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), a proteasomal deubiquitinating enzyme, is closely related to tau aggregation; however, the associated mechanisms remain unclear. Here, we showed that UCH-L1 inhibition interrupts proteasomal impairment-induced tau aggresome formation. By reducing the production of lysine (K63)-linked ubiquitin chains, UCH-L1 inhibition decreases HDAC6 deacetylase activity and attenuates the interaction of HDAC6 and tau protein, finally leading to tau aggresome formation impairment. All these results indicated that UCH-L1 plays a key role in the process of tau aggresome formation by regulating HDAC6 deacetylase activity and implied that UCH-L1 may act as a signaling molecule to coordinate the effects of the ubiquitin-proteasome system and the autophagy-lysosome pathway, which mediate protein aggregates degradation in the cytoplasm.  相似文献   

3.
In this work, the role of HDAC6, a type II histone deacetylase with tubulin deacetylase activity, in lymphocyte polarity, motility, and transmigration was explored. HDAC6 was localized at dynamic subcellular structures as leading lamellipodia and the uropod in migrating T-cells. However, HDAC6 activity did not appear to be involved in the polarity of migrating lymphocytes. Overexpression of HDAC6 in freshly isolated lymphocytes and T-cell lines increased the lymphocyte migration mediated by chemokines and their transendothelial migration under shear flow. Accordingly, the knockdown of HDAC6 expression in T-cells diminished their chemotactic capability. Additional experiments with HDAC6 inhibitors (trichostatin, tubacin), other structural related molecules (niltubacin, MAZ-1391), and HDAC6 dead mutants showed that the deacetylase activity of HDAC6 was not involved in the modulatory effect of this molecule on cell migration. Our results indicate that HDAC6 has an important role in the chemotaxis of T-lymphocytes, which is independent of its tubulin deacetylase activity.  相似文献   

4.
Histone deacetylase 6 (HDAC6) controls acetylation of a number of cytosolic proteins, most prominently tubulin. Tubacin is a small molecule inhibitor of HDAC6 selected for its selective inhibition of HDAC6 relative to other histone deacetylases. For this reason it has become a useful pharmacological tool to discern the biological functions of HDAC6 in numerous cellular processes. The interest of this laboratory is in the function and regulation of sphingolipids, a family of lipids based on the sphingosine backbone. Sphingolipid biosynthesis is initiated by the rate limiting enzyme serine palmitoyltransferase (SPT). Sphingolipids have critical and diverse functions in cell survival, apoptosis, intra- and intercellular signaling, and in membrane structure. In the course of examining the role of HDAC6 in the regulation of sphingolipid biosynthesis we observed that tubacin strongly inhibited de novo synthesis whereas HDAC6 knockdown very moderately stimulated synthesis. We resolved these seemingly contradictory results by demonstrating that, surprisingly, tubacin is a direct inhibitor of SPT activity in permeabilized cells. Furthermore tubacin inhibits de novo sphingolipid synthesis in intact cells at doses commonly used to test HDAC6 function and does so in an HDAC6-independent manner. Niltubacin is a chemical analog of tubacin which lacks tubacin’s HDAC6 activity, and so is often used as a control for off-target effects of tubacin. We find that niltubacin is inactive in the inhibition of sphingolipid biosynthesis, and so does not serve to distinguish the inhibitory effects of tubacin on HDAC6 from those on sphingolipid biosynthesis. These results indicate that caution should be used in the use of tubacin to study the role of HDAC6.  相似文献   

5.
The Class II histone deacetylase, HDAC6, has been shown to be involved in cell motility, aggresome formation and mitochondria transport. HDAC6 deacetylase activity regulates α-tubulin acetylation levels and thus plays a critical role in these processes. In turn, HDAC6 activity can be regulated by interaction with various proteins including multiple kinases. Kinase mediated phosphorylation of HDAC6 can lead to either increased or reduced activity. Our previous research has shown that sequestosome1/p62 (SQSTM1/p62) interacts with HDAC6 and regulates its activity. As SQSTM1/p62 is a scaffolding protein known to interact directly with the zeta isoform of Protein Kinase C (PKCζ), we sought to examine if HDAC6 could be a substrate for PKCζ phosphorylation and if so, how its activity might be regulated. Our data demonstrate that HDAC6 is not only present in a protein complex with PKCζ but can also be phosphorylated by PKCζ. We also show that specific phosphorylation of HDAC6 by PKCζ increases HDAC6 deacetylase activity resulting in reduced acetylated tubulin levels. Our findings provide novel insight into the molecular mechanism by which HDAC6, PKCζ and SQSTM1/p62 function together in protein aggregate clearance. These results also highlight a new research direction which may prove fruitful for understanding the underlying cause of several neurodegenerative diseases.  相似文献   

6.
Autophagy is a conserved mechanism for controlling the degradation of misfolded proteins and damaged organelles in eukaryotes and can be induced by nutrient withdrawal, including serum starvation. Although differential acetylation of autophagy-related proteins has been reported to be involved in autophagic flux, the regulation of acetylated microtubule-associated protein 1 light chain 3 (LC3) is incompletely understood. In this study, we found that the acetylation levels of phosphotidylethanolamine (PE)-conjugated LC3B (LC3B-II), which is a critical component of double-membrane autophagosome, were profoundly decreased in HeLa cells upon autophagy induction by serum starvation. Pretreatment with lysosomal inhibitor chloroquine did not attenuate such deacetylation. Under normal culture medium, we observed increased levels of acetylated LC3B-II in cells treated with tubacin, a specific inhibitor of histone deacetylase 6 (HDAC6). However, tubacin only partially suppressed serum-starvation-induced LC3B-II deacetylation, suggesting that HDAC6 is not the only deacetylase acting on LC3B-II during serum-starvation-induced autophagy. Interestingly, tubacin-induced increase in LC3B-II acetylation was associated with p62/SQSTM1 accumulation upon serum starvation. HDAC6 knockdown did not influence autophagosome formation but resulted in impaired degradation of p62/SQSTM1 during serum starvation. Collectively, our data indicated that LC3B-II deacetylation, which was partly mediated by HDAC6, is involved in autophagic degradation during serum starvation.  相似文献   

7.
Human SIRT2 is a cytoplasmic NAD-dependent deacetylase implicated in the mitotic regulation of microtubule dynamics by its association with the class II histone deacetylase 6 (HDAC6). We have previously reported that SIRT2 is multiply phosphorylated in a cell cycle dependent pattern. Here, we demonstrate that HDAC6 binds to both phosphorylated and unphosphorylated forms of SIRT2 and that tubulin binds only to the SIRT2-HDAC6 complex. Tubulin does not bind to either HDAC6 or SIRT2 individually. In addition, we show that replacement of specific serines with alanines in either isoform of SIRT2 regulates its enzymatic activity. We also found that overexpression of isoform2 was deleterious to cell survival. SIRT2 was found to be phosphorylated at serines 368 and 372, outside the conserved core domain of the Sir2 protein family. Double replacement of S368A and S372A reduced SIRT2 deacetylase activity by 44% compared to wildtype activity. Replacements of other serine, threonine, and tyrosine residues, which did not alter the phosphorylation pattern, had varying effects on SIRT2 deacetylase activity but no effect on tubulin/HDAC6 binding.  相似文献   

8.
Tubacin is a small molecule inhibitor of histone deacetylase 6 and blocks aggresome activity. We found that Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) cells were generally killed by lower doses of tubacin than EBV-transformed lymphoblastoid cells (LCLs) or EBV-negative BL cells. Tubacin induced apoptosis of LCLs, which was inhibited by pretreatment with a pancaspase inhibitor but not by butylated hydroxyanisole, which inhibits reactive oxygen species. In contrast, tubacin killed EBV-positive BL cells in a caspase-3-independent pathway that involved reactive oxygen species and was blocked by butylated hydroxyanisole. Previously, we showed that bortezomib, a proteasome inhibitor, induces apoptosis of EBV LCLs and that LCLs are killed by lower doses of bortezomib than EBV-positive BL cells. Here we found that the combination of bortezomib and tubacin acted in synergy to kill EBV-positive BL cells and LCLs. Tubacin or the combination of bortezomib and tubacin did not induce EBV lytic replication. These findings suggest that the combination of a proteasome inhibitor and an HDAC6 inhibitor may represent a useful strategy for the treatment of certain EBV-associated B cell lymphomas.Epstein-Barr virus (EBV)4 is associated with several human lymphoid malignancies, including Hodgkin disease, Burkitt lymphoma (BL), T cell lymphomas, and post-transplant lymphoproliferative disease (1, 2). Tissues from patients with EBV post-transplant lymphoproliferative disease typically have a type 3 latency pattern in which each of the EBV latency-associated proteins, including EBV nuclear antigens (EBNA-1, -2, -3A, -3B, and -3C) and latent membrane proteins (LMP1 and LMP2) are expressed. A type 3 latency pattern is also seen in lymphoblastoid cell lines (LCLs), derived from primary B cells transformed with EBV in vitro. Tissues from patients with EBV-positive BL usually have a type 1 latency pattern with expression of EBNA-1 but not the other latency-associated proteins. When grown in cell culture, BL cell lines can have a type 1 or a type 3 pattern of latency.The treatment of EBV-associated lymphoid malignancies often requires cytotoxic chemotherapy, which is not always successful. Inhibition of proteasomes and aggresomes represents new therapeutic targets for malignancies (35). Degradation of proteins is required for vital cell functions and is carried out both in proteasomes and aggresomes. Misfolded or unfolded proteins are polyubiquitinated by a complex of proteins and subsequently degraded by proteasomes. However, if ubiquitinated proteins escape degradation by proteasomes and aggregate, they accumulate into aggresomes (6). Aggresome formation can be abrogated by disrupting the microtubule cytoskeleton or by overexpression of the p50 subunit of dynactin (7). HDAC6 (histone deacetylase 6) is a microtubule-associated deacetylase that can induce microtubule disassembly and promote chemotactic cell motility (810). HDAC6 contains a dynein motor binding domain, two catalytic domains with histone deacetylase activity, and a carboxyl-terminal domain that binds polyubiquitinated misfolded proteins (11). The carboxyl catalytic domain of HDAC6 possesses α-tubulin deacetylase activity (12). HDAC6 is required for transport of misfolded proteins for aggresome formation and to prevent apoptosis in response to misfolded protein stress (11). HDAC6 inhibitors disrupt aggresomes (5). Tubacin inhibits the carboxyl catalytic domain of HDAC6, increases the level of acetylated α-tubulin, and blocks aggresome activity (4, 12, 13).Bortezomib is an inhibitor of the 26 S proteasome (3). Previously, we showed that bortezomib induces apoptosis of EBV-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells (14). In contrast, EBV-negative Burkitt lymphoma cells were much less sensitive to killing by bortezomib. Since bortezomib has been shown to interact synergistically with tubacin to induce apoptosis in multiple myeloma cells (4), we studied the effect of tubacin on EBV-transformed B cells and Burkitt lymphoma cells both in the absence and presence of bortezomib. We show that tubacin kills LCLs by apoptosis and induction of caspase-3, whereas tubacin kills EBV-positive BL cells by induction of reactive oxygen species. Bortezomib and tubacin acted in synergy to kill EBV-positive BL cells and LCLs. These findings suggest that the combination of tubacin and bortezomib may have potential as a model for the treatment of certain EBV-associated lymphomas.  相似文献   

9.
We present for the first time that histone deacetylase 6 (HDAC6) regulates EGFR degradation and trafficking along microtubules in Pkd1 mutant renal epithelial cells. HDAC6, the microtubule-associated α-tubulin deacetylase, demonstrates increased expression and activity in Pkd1 mutant mouse embryonic kidney cells. Targeting HDAC6 with a general HDAC inhibitor, trichostatin (TSA), or a specific HDAC6 inhibitor, tubacin, increased the acetylation of α-tubulin and downregulated the expression of EGFR in Pkd1 mutant renal epithelial cells. HDAC6 was co-localized with EGF induced endocytic EGFR and endosomes, respectively. Inhibition of the activity of HDAC6 accelerated the trafficking of EGFR from early endosomes to late endosomes along the microtubules. Without EGF stimulation EGFR was randomly distributed while after stimulation with EGF for 30 min, EGFR was accumulated around α-tubulin labeled microtubule bundles. These data suggested that the Pkd1 mutation induced upregulation of HDAC6 might act to slow the trafficking of EGFR from early endosomes to late endosomes along the microtubules for degradation through deacetylating α-tubulin. In addition, inhibition of HDAC activity decreased the phosphorylation of ERK1/2, the downstream target of EGFR axis, and normalized EGFR localization from apical to basolateral in Pkd1 knockout mouse kidneys. Thus, targeting HDAC6 to downregulate EGFR activity may provide a potential therapeutic approach to treat polycystic kidney disease.  相似文献   

10.
11.
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine –phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro . The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease.  相似文献   

12.
13.
14.
The role of histone deacetylase 3 (HDAC3) is to repress the expression of various genes by eliminating acetyl group from histone. Thus, the regulation of HDAC3 activity is essential to maintain cellular homeostasis. In this study, we found that HDAC3 interacts with c-Src kinase. However, the interaction between HDAC3 and c-Src was previously reported, it has still been ambiguous whether c-Src phosphorylates HDAC3 and affects the function of HDAC3. First, we confirmed that HDAC3 directly binds to c-Src, and c-Src identified to interact with C-terminal domain (277–428 a.a.) of HDAC3. c-Src also phosphorylated three tyrosine sites of HDAC3 at tyrosine 325, 328, and 331. Importantly, wild-type c-Src increases HDAC3 activity, but not mutant c-SrcK298M (kinase inactive form). When these tyrosine residues are all substituted for alanine residues, the deacetylase activity of mutant HDAC3 was abolished. In addition, a proliferation of HER2-positive breast cancer cells expressing phosphorylation deficient mutant HDAC3 is decreased in comparison with control cells. Thus, our findings suggested that phosphorylation of HDAC3 by c-Src kinase regulates the HDAC3 activity and the proliferation of breast cancer cells.  相似文献   

15.
16.
Hyperphosphorylated tau, which is the major protein of the neurofibrillary tangles in Alzheimer's disease brain, is most probably the result of an imbalance of tau kinase and phosphatase activities in the affected neurons. By using metabolically competent rat brain slices as a model, we found that selective inhibition of protein phosphatase 2A by okadaic acid induced an Alzheimer-like hyperphosphorylation and accumulation of tau. The hyperphosphorylated tau had a reduced ability to bind to microtubules and to promote microtubule assembly in vitro. Immunocytochemical staining revealed hyperphosphorylated tau accumulation in pyramidal neurons in cornu ammonis and in neocortical neurons. The topography of these changes recalls the distribution of neurofibrillary tangles in Alzheimer's disease brain. Selective inhibition of protein phosphatase 2B with cyclosporin A did not have any significant effect on tau phosphorylation, accumulation, or function. These studies suggest that protein phosphatase 2A participates in regulation of tau phosphorylation, processing, and function in vivo. A down-regulation of protein phosphatase 2A activity can lead to Alzheimer-like abnormal hyperphosphorylation of tau.  相似文献   

17.
18.
The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.  相似文献   

19.
Histone deacetylase 6 (HDAC6) contains tandem catalytic domains and a ubiquitin-binding zinc finger and displays deacetylase activity toward acetylated microtubules. Here we show that unlike its orthologs from Caenorhabditis elegans, Drosophila, and mouse, human HDAC6 possesses a tetradecapeptide repeat domain located between the second deacetylase domain and the C-terminal ubiquitin-binding motif. Related to this structural difference, the cytoplasmic localization of human, but not murine, HDAC6 is resistant to treatment with leptomycin B (LMB). Although it is dispensable for the deacetylase and ubiquitin binding activities of human HDAC6, the tetradecapeptide repeat domain displays acetyl-microtubule targeting ability. Moreover, it forms a unique structure and is required for the LMB-resistant cytoplasmic localization of human HDAC6. Besides the tetradecapeptide repeat domain, human HDAC6 possesses two LMB-sensitive nuclear export signals and a nuclear localization signal. These results thus indicate that the cytoplasmic localization for murine and human HDAC6 proteins is differentially regulated and suggest that the tetradecapeptide repeat domain serves as an important sequence element to stably retain human HDAC6 in the cytoplasm.  相似文献   

20.
Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. We therefore speculated that increasing tau O-GlcNAc could be a strategy to hinder pathological tau-induced neurodegeneration. Here we found that treatment of hemizygous JNPL3 tau transgenic mice with an O-GlcNAcase inhibitor increased tau O-GlcNAc, hindered formation of tau aggregates and decreased neuronal cell loss. Notably, increases in tau O-GlcNAc did not alter tau phosphorylation in vivo. Using in vitro biochemical aggregation studies, we found that O-GlcNAc modification, on its own, hinders tau oligomerization. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号