首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blackfly larvae typically occur in fast-flowing riffle sections of rivers, with different blackfly species showing preferences for different hydraulic conditions. Very little quantitative data exist on hydraulic conditions linked to the blackfly species occurring in South African streams. Stones-in-current biotopes (i.e. fast riffle flows over cobbles) were sampled from four sites in three small clear streams in the Eastern and Western Cape provinces of South Africa. Mean water column velocities at each sampled stone were measured using a mini current meter, while flow velocities closer to the boundary layer where blackfly larvae occurred were estimated using indirect techniques (standard hemispheres and aerating tablets). Standard hemispheres were also used to calculate more complex hydraulic parameters such as Froude and Reynolds numbers. Four species of Simuliid were sampled in sufficient numbers to show trends in flow velocity preferences. Simulium impukane and S. rutherfoordi both occurred at their highest densities at velocities of 0.3m s?1, while S. merops preferred velocities of 0.7m s?1. Simulium nigritarse SL attained the highest densities of all the blackfly species sampled, and its relative abundances were greatest at velocities of 0.8–0.9m s?1. Within the streams surveyed, all blackfly species occurred in subcritical-turbulent flows — based on a classification using Froude and Reynolds numbers — although two of the species were also found in high densities in supercritical flows where these existed at the sites. Local hydraulics within the stones-in-current biotope are complex, but in the absence of fine-scale equipment for measuring micro-velocities, standard hemispheres are a useful, cost-effective technique for the initial quantification of hydraulic parameters in small, clear streams. Such an approach facilitates further understanding of links between hydraulics and aquatic invertebrates in South African streams.  相似文献   

2.
1. The feeding habitat of a river specialist, blue duck (Hymenolaimus malacorhynchos (Gmelin 1789): Anatidae), was characterized in terms of water depth and velocity on eight occasions over a 13-month period in a river in the central North Island of New Zealand using video to record activity and relocate feeding sites. 2. Of the five feeding activities identified (‘pecking’, ‘grazing’, ‘head-dipping’, up-ending’ and ‘diving’), adult blue duck used mostly head-dipping (> 60% of feeding events on all dates), although diving or grazing from submerged surfaces of exposed boulders comprised major proportions of feeding behaviour (up to 33%) on occasions. Variations in feeding behaviour between dates partly reflected changes in antecedent flow conditions and the annual cycle of the birds. 3. Grazing and diving occurred in significantly faster water (mostly 0.3–0.45 m s–1) and at significantly different depths (mean = 0.10 and 0.55 m, respectively) than head-dipping (0.20 m depth and 0.28 m s–1 velocity). Adult feeding depths and velocities at four sites on different dates averaged 0.20 m and 0.31 m s–1, respectively. Most feeding by 3–4-week-old ducklings occurred over a similar distribution of water velocities to adults but over a wider range of depths. 4. Adult birds fed in significantly shallower and lower velocity water than was available on the two dates that comparisons could be made. Ducklings also fed over a slower range of water velocities but were not selective in terms of water depth. 5. Energetically more expensive search methods were employed at times of high apparent energy demand to access flow microhabitats where larger bodied prey were more likely to be encountered. 6. These data indicate that, like other aquatic organisms, river birds can be influenced by basic hydraulic elements of river flow, but show at the same time that adult blue duck can accommodate variable lotic environments efficiently.  相似文献   

3.
Water flow was visualized around 10 seaweeds with various morphologies to determine the onset of turbulence and to estimate the scales of motion generated by the seaweeds themselves. For single-bladed specimens of the kelps Laminaria setchellii, Costaria costatum, Macrocystis integrifolia, and Alaria marginata, the transition from a laminar to turbulent velocity boundary layer occurred at mainstream velocities of 1.5 cm.s?1. Transition to turbulence fm multiple-bladed specimens of M. integrifolia, Nereocystis luetkeana, Egregia menziesii, and Fucus gardneri occurred at 2.5–3 cm-s?1 and at 5 cm.s?1 for the coarsely branched red seaweed, Gelidium coulteri. Flow features such as separation, recirculating eddies, and Von Kánncán vortex streets were observed around various morphologtcal features. We suggest that in the field, flow around larger macroalgae such as kelp is mostly turbulent and that many seaweeds will lie within the wakes of neighboring macroalgae. For small, branched seaweeds such as G. coulteri, however, the meshlike structure may damp turbulence within the thallus, thereby increasing the mainstream velocity at which the transition to turbulence occurs.  相似文献   

4.
The swimming performance of longnose dace Rhinichthys cataractae, the most widely distributed minnow (Cyprinidae) in North America, was assessed in relation to potential passage barriers. The study estimated passage success, maximum ascent distances and maximum sprint speed in an open‐channel flume over a range of water velocities and temperatures (10·7, 15·3 and 19·3° C). Rhinichthys cataractae had high passage success (95%) in a 9·2 m flume section at mean test velocities of 39 and 64 cm s–1, but success rate dropped to 66% at 78 cm s–1. Only 20% of fish were able to ascend a 2·7 m section with a mean velocity of 122 cm s–1. Rhinichthys cataractae actively selected low‐velocity pathways located along the bottom and corners of the flume at all test velocities and adopted position‐holding behaviour at higher water velocities. Mean volitional sprint speed was 174 cm s–1 when fish volitionally sprinted in areas of high water velocities. Swimming performance generally increased with water temperature and fish length. Based on these results, fishways with mean velocities <64 cm s–1 should allow passage of most R. cataractae. Water velocities >100 cm s–1 within structures should be limited to short distance (<1 m) and structures with velocities ≥158 cm s–1 would probably represent movement barriers. Study results highlighted the advantages of evaluating a multitude of swimming performance metrics in an open‐channel flume, which can simulate the hydraulic features of fishways and allow for behavioural observations that can facilitate the design of effective passage structures.  相似文献   

5.
Summary Subtidal sand dollars, Dendraster excentricus, assume an inclined posture under conditions of moderate water flow (10 cm s-1 to 2 m s-1). In this posture, when the test is in the usual position parallel to the water flow, the test acts as a lifting body. Analysis of the hydrodynamic characteristics of the sand dollar test was accomplished by slender body theory. Streamline curvature due to lift moves food particles in the direction of the feeding surface and enhances feeding efficiency. The position parallel to water flow is most advantageous to sand dollars in reversing flows, such as wave surge, whereas sand dollars in unidirectional flows can place the test at a slight angle to the water flow to increase lift. The high camber of sand dollars from a bay habitat characterized by low water velocities was interpreted as an adaptation allowing efficient lift production in low velocity flows; sand dollars from a protected outer coast location characterized by higher water velocities were significantly less cambered.Within sand dollar beds, the animals alter their spacing as a function of the water velocity. This movement is construed as a method for maintaining the optimal gap between sand dollars. Sand dollar tests induce mutual interference effects which vary with the configuration of the animals. In the prevalent configuration, sand dollars are able to take advantage of the streamline curvature induced by neighboring animals. The optimal gap increases as the square of the water velocity. At distances grater than or less than the optimal gap, feeding efficiency was shown to decrease from that at the optimal gap.  相似文献   

6.
1. Hong Kong streams are subject to aggressive water extractions but the downstream water needs of ecosystems – i.e. environmental flow (e‐flow) requirements – have not yet been addressed. This study investigated hydro‐ecological relationships that could be used to establish e‐flow allocations for streams in monsoonal Hong Kong. 2. Data were collected during the wet and dry seasons from 10 unpolluted streams experiencing a gradient of flow reductions (c. 0–98%). Relationships between flow conditions (percentage discharge reduction and absolute discharge volume) and responses of macroinvertebrate composition and periphyton condition were established for each season. 3. Declines in richness of Ephemeroptera and abundance of hydropsychid caddisflies, as well as increases in the proportion of predators, were linearly related to percentage discharge reduction during both seasons. Relationships were also recorded for eight other macroinvertebrate richness or compositional metrics during the dry season only. Relationships between macroinvertebrate assemblage attributes and absolute discharge volume across downstream reaches were also evident. Periphyton was relatively insensitive to flow reductions and did not provide useful hydro‐ecological relationships, although declines in autotrophic index were related to percentage discharge reduction during the dry season. 4. Using hydro‐ecological relationships established for macroinvertebrates, two levels of e‐flow were proposed: a ‘threshold’ intended to maintain near‐natural conditions and a ‘degradation limit’ that allowed no more than 25% of the maximum indicator response to flow reduction. Calculated threshold e‐flows required downstream allocation of ≥74% of natural flows; degradation limit e‐flows were ≥12% (wet) and ≥27% (dry). The discharge needed to maintain threshold conditions was 30–105 L s?1 (wet) and 5–14 L s?1 (dry), with degradation limit e‐flows of 19–57 L s?1 (wet) and 3–6 L s?1 (dry), relative to natural mean discharges of 77–303 L s?1 (wet) and 3–18 L s?1 (dry). 5. The proposed e‐flow allocations are indicative only, and significant obstacles to implementation have yet to be surmounted. Any such implementation requires monitoring of outcomes in order to refine the allocations and inform adaptive flow management for Hong Kong streams.  相似文献   

7.
Organisms employ a wide array of physiological and behavioral responses in an effort to endure stressful environmental conditions. For many marine invertebrates, physiological and/or behavioral performance is dependent on physical conditions in the fluid environment. Although factors such as water temperature and velocity can elicit changes in respiration and feeding, the manner in which these processes integrate to shape growth remains unclear. In a growth experiment, juvenile barnacles (Balanus glandula) were raised in dockside, once-through flow chambers at water velocities of 2 versus 19 cm s−1 and temperatures of 11.5 versus 14 °C. Over 37 days, growth rates (i.e., shell basal area) increased with faster water velocities and higher temperatures. Barnacles at high flows had shorter feeding appendages (i.e., cirri), suggesting that growth patterns are unlikely related to plastic responses in cirral length. A separate experiment in the field confirmed patterns of temperature- and flow-dependent growth over 41 days. Outplanted juvenile barnacles exposed to the faster water velocities (32±1 and 34±1 cm s−1; mean±SE) and warm temperatures (16.81±0.05 °C) experienced higher growth compared to individuals at low velocities (1±1 cm s−1) and temperatures (13.67±0.02 °C). Growth data were consistent with estimates from a simple energy budget model based on previously measured feeding and respiration response curves that predicted peak growth at moderate temperatures (15 °C) and velocities (20–30 cm s−1). Low growth is expected at both low and high velocities due to lower encounter rates with suspended food particles and lower capture efficiencies respectively. At high temperatures, growth is likely limited by high metabolic costs, whereas slow growth at low temperatures may be a consequence of low oxygen availability and/or slow cirral beating and low feeding rates. Moreover, these results advocate for approaches that consider the combined effects of multiple stressors and suggest that both increases and decreases in temperature or flow impact barnacle growth, but through different physiological and behavioral mechanisms.  相似文献   

8.
9.
The relationship between ambient seawater flow velocity and growth of the giant scallop Placopecten magellanicus Gmelin is shown to be a reverse ramp function with growth inhibition at flow velocities of > 10–20 cm · s−1. The mechanism of inhibition involves a reduction in ration as velocities around the scallop increase. In ambient flows which are sufficient to cause overloading of the scallop gill, the feeding/filtration rate is reduced by an unknown mechanism, possibly involving the mantle edge closing or a gill bypass mechanism operating. In ambient flows where the pressure at the exhalant opening exceeds the inhalant plus the pressure head created by the gill, as when the scallop is placed dorsal edge to the flow, the tendency for flow reversal is resisted by a similar mechanism involving a reduction in feeding/filtration rate.  相似文献   

10.
Gonen  Y.  Kimmel  E.  Friedlander  M. 《Hydrobiologia》1993,260(1):493-498
Bulk water velocities and local relative velocities generated in experimental tanks around and within thalli of free moving Gracilaria conferta were estimated according to the dissolution rate of benzoic acid sticks. Boundary-layer thickness and HCO 3 -mass-transfer coefficient were derived from the water velocities. Average relative velocities varied between 12 cm s –1 to less than 0.1 cm s –1 as a function of the absolute water flow in the tank, alga shape and location within the thallus. The lower range of velocities was observed at 20% of maximum aeration in the inner part of the plant. In laboratory experiments, photosynthetic rates, as determined in a closed Clark-type O2-electrode system, increased by 30%–50% when water velocity was increased from zero to about 1.5 cm s –1. Another minor increase was obtained between 1.5 cm s –1 and 8 cm s –1 water velocity. This response to water motion was affected by bulk inorganic carbon concentration and by plant condition, as was reflected from the differences in the response in the winter and spring. It might be suggested that under carbon saturation, water velocity above 2 cm s–1 provided almost sufficient flow to saturate carbon uptake.  相似文献   

11.
The aquatic larvae of two simuliid species, Austrosimulium furiosum (Skuse) and Simulium ornatipes Skuse, which often occur together in Victorian streams, were shown in laboratory experiments to have preferences for different water velocities: larvae of A. furiosum preferred water velocities of 0.2–0.3 m s–1, and S. ornatipes preferred water velocities of 0.9–1.3 m s –1 . Final instar larvae of both species selected slow water speeds of less than 0.25 m s –1 prior to pupation. Flow patterns around a cylinder in a laboratory stream were mapped, and the distribution of A. furiosum larvae within the wake, paired vortices and horseshoe vortex was recorded. Larvae selected areas with suitable water velocities and aligned with the flow, providing flow visualization of micro-current speed and direction. The potential for micro-habitat partitioning is discussed in relation to benthic sampling strategies.  相似文献   

12.
There is considerable interest in both Europe and the USA in the effects of microbiological fouling on stainless steels in potable water. However, little is known about the formation and effects of biofilms, on stainless steel in potable water environments, particularly in turbulent flow regimes. Results are presented on the development of biofilms on stainless steel grades 304 and 316 after exposure to potable water at velocities of 0.32, 0.96 and 1.75 m s−1. Cell counts on slides of stainless steel grades 304 and 316 with both 2B (smooth) and 2D (rough) finishes showed viable and total cell counts were higher at the higher flow rates of 0.96 and 1.75 m s−1, compared to a flow rate of 0.32 m s−1. Extracellular polysaccharide levels were not significantly different (P< 0.05) between each flow rate on all stainless steel surfaces studied. higher levels were found at the higher water velocities. the biofilm attached to stainless steel was comprised of a mixed bacterial flora including Acinetobacter sp, Pseudomonas spp, Methylobacterium sp, and Corynebacterium/Arthrobacter spp. Epifluorescence microscopy provided evidence of rod-shaped bacteria and the formation of stands, possibly of extracellular material attached to stainless steel at high flow rates but not at low flow rates. Received 04 February 1998/ Accepted in revised form 12 February 1999  相似文献   

13.
This paper describes a case study to rehabilitate habitat for adult European grayling (Thymallus thymallus L.) in a large river reservoir in northern Finland. A channelled river reach was restored by building small islands and reefs as well as cobble and boulder structures for grayling. The total area of the restored stretch was 1.0 ha. The physical habitat was mapped using an echosounder, Doppler device, tachometer and scuba diving, and modelled with a 2D hydraulic model. The mean water velocity in the modelled stream section was 0.28 m s?1 during 110 m3 s?1 flow and 0.43 m s?1 during 300 m3 s?1 flow. Twelve adult grayling, tagged with transmitters, were released into the area and tracked for a maximum period of 30 days. The grayling largely stayed in the restored area and tended to avoid the unchanged channel of the river. The range of daily movement was from stationary to 2700 m per day. The adult grayling preferred water velocities between 0.20 and 0.45 m s?1, water depths between 0.20 and 1.55 m and coarse substrate. The study provides a small part of the information needed in habitat restoration for grayling.  相似文献   

14.
We examined the hypothesis that the heterogeneity of epilithic algal assemblages in streams may be partly a result of hydrologic differences created when water flows over a rough substrate. A 32-day experiment was conducted in laboratory streams that contained either 22.5 × 22.5 × 4 cm or 7.5 × 22.5 × 4 cm tile blocks. Free water velocities in the streams overaged 28 cm·s?1. Hydrologic parameters and algal assemblages associated with surfaces on top of blocks and with recessed surfaces between blocks were compared to corresponding surfaces in streams with of relief. In streams with blocks, shear velocities averaged 1.7 cm·s?1 on the top of blocks and 0.8 cm·s?1 in the recessed areas. Shear velocity at corresponding surfaces in the control (no relief) streams averaged 1.9 cm·s?1 and exhibited little variation. The hydrologic differences created by the larger blocks significantly affected the distribution of algal biomass, with recessed areas having an average of 2.6 g·m?2 AFDW more biomass than surfaces on the top of blocks. Differences in shear velocities and biomass accumulation between top and recessed areas for the smaller blocks were less than for large blocks. Successional changes on all substrates were similar with the exception that recessed surfaces had a significantly greater abundance of the filamentous chlorophyte Stigeoclonium tenue (Ag.) Kütz after day 16. The results suggest that in cobble riffle areas of natural streams, the interaction between current flow and substrate relief has the potential to create patches of algae which are different in biomass and taxonomic composition.  相似文献   

15.
The modification of flows in lotic ecosystems can have dramatic effects on abiotic and biotic processes and change the structure of basal trophic levels. In high-gradient streams, most of the biota are benthic, and decreased flow may homogenize and reduce benthic current velocity, potentially changing stream ecosystem function. Grazing by macroinvertebrates is an important component of stream function because grazers regulate energy flow from primary producers to higher trophic levels. We conducted an experiment to examine how macroinvertebrate grazers facilitated or removed algal biomass across a gradient of benthic current velocity (0–40 cm s?1). We chose three grazers (Drunella coloradensis, Cinygmula spp., and Epeorus deceptivus) from a montane stream and conducted our experiment using 24 artificial stream channels that had three treatments: no grazers (control), single-grazer, and combined-grazer treatments. In the absence of grazers, algal biomass increased with benthic current velocity. Grazer treatments differed from the control in that more algal biomass was removed at higher velocities, whereas algal accrual was largely facilitated at low velocities. The transition from facilitation to removal ranged from 4.5 to 5.9 cm s?1 for individual grazer treatments and occurred at 11.7 cm s?1 for the combined-grazer treatment. Our data suggest that velocity plays a significant role in the facilitation and removal of algae by macroinvertebrate grazers. Additionally, the patterns revealed here could have general implications for algal accrual in systems where flow is reduced.  相似文献   

16.

Using a specially designed flow system Pseudomonas fluorescens has been grown on the inside of glass tubes under carefully controlled conditions. Results show that films developed from water flowing at 0–5 m.s‐1 are less compact and thicker than with a water velocity of 2–5 m.s‐1. In the latter all the cells are aligned in the direction of flow whereas in the former the individual cells directly attached to the surface, are randomly distributed with groups of cells lying parallel to the tube axis.  相似文献   

17.
Benbow  M. E.  Burky  A. J.  Way  C. M. 《Hydrobiologia》1997,346(1-3):129-135
Telmatogeton torrenticola Terry is a large endemic chironomid (lastinstar >20 mm) commonly found in high gradient Hawaiian streams on smoothrock surfaces with torrential, shallow flow and in the splash zones ofwaterfalls. We have quantified benthic water flow in larval habitat in a 50m segment of Kinihapai Stream, Maui using a thermistor-based microcurrentmeter. Under base flow conditions at sites suitable for larval attachment,depth was measured and bottom water velocity measurements were made 2 mmabove populations. Larval densities ranged from 386.9–1178m–2, habitat bottom water velocities from 13.4–64.2 cms–1, and water depths from 1.5–50 cm. Bottom velocitiesof sites with zero larvae ranged from 20.8–21.8 cm s–1with depths from 50 to >160 cm. Larval densities were greatest inareas with high bottom water velocities and shallow depths. Stepwisemultiple regression analyses showed that density could be confidentlypredicted best by Froude number (r=0.81; p=0.008). In the absence of Froudenumber as a regression term, the best variable to predict larval density wasbottom velocity ratio: relative depth ratio (r=0.75; p=0.019). In addition,the torrential habitat of the larvae was always characterized by aperiphyton community that appeared to be the primary food resource for thelarvae. These data suggest that torrential flows over appropriate substratesare important factors regulating habitat availability for T. torrenticolaand that reduced discharge (e.g. affected by water diversions) couldsignificantly reduce the amount of available habitat for this organism andother flow sensitive stream fauna.  相似文献   

18.
The diotocardian gastropod Patina pellucida (L.) is a macro-herbivore common upon the fronds of laminarian algae. Considerations of shell shape, adhesive tenacity, and current tolerance, together with calculations of expected hydrodynamic drag, indicate that this limpet is effectively streamlined. Smaller individuals are relatively more resistant to dislodgement than are larger ones. Experimental animals of 6.0–13.5 mm shell length resisted constant flows of up to 0.9-1.3 m s?1. An orientation, in which the longitudinal axis of a limpet is aligned parallel to the direction of the prevailing flow, is induced by currents faster than ≈ 0.5 m s?1, and is an adaptation to conditions of directional water streaming. P. pellucida appears to show a seasonal change in orientatory preference, individuals tending to point distally with respect to the algal lamina in spring and proximally in autumn: this change may be associated with the annual growth cycle of the host plant.  相似文献   

19.
Flume tanks are becoming increasingly important research tools in aquatic ecology, to link biological to hydrodynamical processes. There is no such thing as a “standard flume tank”, and no flume tank is suitable for every type of research question. A series of experiments has been carried out to characterise and compare the hydrodynamic characteristics of 12 different flume tanks that are designed specifically for biological research. These facilities are part of the EU network BioFlow. The flumes could be divided into four basic design types: straight, racetrack, annular and field flumes. In each facility, two vertical velocity profiles were measured: one at 0.05 m s−1 and one at 0.25 m s−1. In those flumes equipped with Acoustic Doppler Velocimeters (ADV), time series were also recorded for each velocity at two heights above the bottom: 0.05 m and 20% of the water depth. From these measurements turbulence characteristics, such as TKE and Reynolds stress, were derived, and autocorrelation spectra of the horizontal along-stream velocity component were plotted. The flume measurements were compared to two sets of velocity profiles measured in the field.Despite the fact that some flumes were relatively small, turbulence was fully developed in all channels. Straight and racetrack flumes generally produced boundary layers with a clearly definable logarithmic layer, similar to measurements in the field taken under steady flow conditions. The two annular flumes produced relatively thin boundary layers, presumably due to secondary flows developing in the curved channels. The profiles in the field flumes also differed considerably from the expected log profile. This may either have been due the construction of the flume, or due to unsteady conditions during measurement. Constraints imposed by the different flume designs on the suitability for different types of boundary layer research, as well as scaling issues are discussed.  相似文献   

20.
The mean column velocity preference of juvenile Atlantic salmon Salmo salar (LF 30–55 mm) was investigated by observing their spatial pattern of habitat use in a laboratory flume while varying discharge (Q) over a 18‐fold range (Q=2·6–46·8l s‐1). Based on 341 fish observations at three discharges (Q=2·6, 15·0 and 46·8l s‐1), three separate velocity preference curves were developed using standard procedures. The mean column velocities measured at 0·6 depth for the fish positions at the set low, medium and high discharges had medians of 7, 10 and 24 cm s‐1, respectively, and varied significantly between the discharges. Across the range of flows, the fish utilized mean column velocities between 0 and 56 cm s‐1, but the three velocity preference curves differed. Differences between juvenile Atlantic salmon use of habitat, defined according to mean column velocities at different discharges, were greatest at the lower end of the available range of velocities (<20 cm s‐1). Weighted usable area (WUA), the output of the instream flow model PHABSIM that is used to describe the available habitat at a given discharge, was calculated for the flume using the preference curves built at the three set discharges. The model was highly sensitive to differences between the three preference curves and WUA varied by up to a two‐fold difference. Furthermore, habitat‐discharge relationships derived from the three preference curves were very different. Predicted habitat losses across the modelled range of discharges varied by up to 150% depending upon which velocity preference curve was used in the model. Thus, the assumption that a single preference curve can be applied across a range of discharges is not valid and is likely to result in large errors when employing PHABSIM and other models that use similar principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号