首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pax3 protein has two DNA binding domains, a Paired domain (PD) and a paired-type Homeo domain (HD). Although the PD and HD can bind to cognate DNA sequences when expressed individually, genetic and biochemical data indicate that the two domains are functionally interdependent in intact Pax3. The mechanistic basis of this functional interdependence is unknown and was studied by protease sensitivity. Pax3 was modified by the creation of Factor Xa cleavage sites at discrete locations in the PD, the HD, and in the linker segment joining the PD and the HD (Xa172, Xa189, and Xa216) in individual Pax3 mutants. The effect of Factor Xa insertions on protein stability and on DNA binding by the PD and the HD was measured using specific target site sequences. Independent insertions at position 100 in the linker separating the first from the second helix-turn-helix motif of the PD and at position 216 immediately upstream of the HD were found to be readily accessible to Factor Xa cleavage. The effect of DNA binding by the PD or the HD on accessibility of Factor Xa sites inserted in the same or in the other domain was monitored and quantitated for multiple mutants bearing different numbers of Xa sites at each position. In general, DNA binding reduced accessibility of all sites, suggesting a more compact and less solvent-exposed structure of DNA-bound versus DNA-free Pax3. Results of dose response and time course experiments were consistent and showed that DNA binding by the PD not only caused a local structural change in the PD but also caused a conformational change in the HD (P3OPT binding to Xa216 mutants); similarly, DNA binding by the HD also caused a conformational change in the PD (P2 binding to Xa100 mutants). These results provide a structural basis for the functional interdependence of the two DNA binding domains of Pax3.  相似文献   

2.
3.
4.
5.
6.
Apuzzo S  Gros P 《Biochemistry》2002,41(40):12076-12085
The mechanism by which the paired domain (PD) and the homeo domain (HD) act together in the intact Pax3 protein to recognize DNA is unclear and was studied in a Pax3 mutant (Pax3-CL) devoid of cysteines. Pax3-CL binds to PD (P6CON-P3OPT sites) and HD (P2, P1/2 sites) DNA site sequences with near wild-type activity but, contrary to Pax3, in a N-ethyl maleimide (NEM) insensitive fashion. The Pax3-CL backbone was used for cysteine scanning mutagenesis and for site-specific NEM modification. Five single cysteine replacements were independently introduced in the PD, while eight were inserted in the HD. NEM sensitivity of PD and HD DNA binding was investigated in DNA-binding competent mutants. In the PD mutant C82, NEM abrogated DNA binding by the PD but also abolished DNA binding by the Cys-less HD. Likewise, in the HD mutant V263C, NEM modification abrogated DNA binding not only by the HD, but also by the Cys-less PD. The transfer of NEM sensitivity to the PD seen in V263C was specific and not due to simple loss of HD DNA binding since alkylation of adjacent V265C and S268C, although impairing HD DNA binding did not affect PD DNA binding. Thus, the PD and HD do not function as independent DNA binding modules in Pax3 but seem functionally interdependent.(1)  相似文献   

7.
8.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

9.
We previously identified a 10-amino acid region from the Y domain of phospholipase Cbeta2 (PLCbeta2) that associates with G-protein betagamma subunits (Sankaran, B., Osterhout, J., Wu, D., and Smrcka, A. V. (1998) J. Biol. Chem. 273, 7148-7154). We mapped the site for cross-linking of a synthetic peptide (N20K) corresponding to this Y domain region to Cys(25) within the amino-terminal coiled-coil domain of Gbetagamma (Yoshikawa, D. M., Bresciano, K., Hatwar, M., and Smrcka, A. V. (2001) J. Biol. Chem. 276, 11246-11251). Here, further experiments with a series of variable length cross-linking agents refined the site of N20K binding to within 4.4-6.7 angstroms of Cys(25). A mutant within the amino terminus of the Gbeta subunit, Gbeta(1)(23-27)gamma(2), activated PLCbeta2 more effectively than wild type, with no significant change in the EC(50), indicating that this region is directly involved in the catalytic regulation of PLCbeta2. This mutant was deficient in cross-linking to N20K, suggesting that a binding site for the peptide had been eliminated. Surprisingly, N20K could still inhibit Gbeta(1)(23-27)gamma(2)-dependent activation of PLC, suggesting a second N20K binding site. Competition analysis with a peptide that binds to the Galpha subunit switch II binding surface of Gbetagamma indicates a second N20K binding site at this surface. Furthermore, mutations to the N20K region within the Y-domain of full-length PLCbeta2 inhibited Gbetagamma-dependent regulation of the enzyme, providing further evidence for aGbetagamma binding site within the catalytic domain of PLCbeta2. The data support a model with two modes of PLC binding to Gbetagamma through the catalytic domain, where interactions with the amino-terminal coiled-coil domain are inhibitory, and interactions with the Galpha subunit switch II binding surface are stimulatory.  相似文献   

10.
11.
12.
Steroidogenic factor 1 (SF1) is a member of the NR5A subfamily of nuclear hormone receptors and is considered a master regulator of reproduction because it regulates a number of genes encoding reproductive hormones and enzymes involved in steroid hormone biosynthesis. Like other NR5A members, SF1 harbors a highly conserved approximately 30-residue segment called the FTZ-F1 box C-terminal to the core DNA binding domain (DBD) common to all nuclear receptors and binds to 9-bp DNA sequences as a monomer. Here we describe the solution structure of the SF1 DBD in complex with an atypical sequence in the proximal promoter region of the inhibin-alpha gene that encodes a subunit of a reproductive hormone. SF1 forms a specific complex with the DNA through a bipartite motif binding to the major and minor grooves through the core DBD and the N-terminal segment of the FTZ-F1 box, respectively, in a manner previously described for two other monomeric receptors, nerve growth factor-induced-B and estrogen-related receptor 2. However, unlike these receptors, SF1 harbors a helix in the C-terminal segment of the FTZ-F1 box that interacts with both the core DBD and DNA and serves as an important determinant of stability of the complex. We propose that the FTZ-F1 helix along with the core DBD serves as a platform for interactions with coactivators and other DNA-bound factors in the vicinity.  相似文献   

13.
We reported that the first two cysteine residues out of three present in paired domain (PD), a DNA-binding domain, are responsible for redox regulation of Pax-8 DNA binding activity. We show that glutathionylation of these cysteines has a regulatory role in PD binding. Wild-type PD and its mutants with substitution of cysteine to serine were synthesized and named CCC, CSS, SCS, SSC, and SSS according to the positions of substituted cysteines. They were incubated in a buffer containing various ratios of GSH/GSSG and subjected to gel shift assay. Binding of CCC, CSS, and SCS was impaired with decreasing GSH/GSSG ratio, whereas that of SSC and SSS was not affected. Because [3H]glutathione was incorporated into CCC, CSS, and SCS, but not into SSC and SSS, the binding impairment was ascribed to glutathionylation of the redox-reactive cysteines. This oxidative inactivation of PD binding was reversed by a reductant dithiothreitol and by redox factor (Ref)-1 in vitro. To explore the glutathionylation in cells, Chinese hamster ovary cells overexpressing CSS and SCS were labeled with [35S]cysteine in the presence of cycloheximide. Immunoprecipitation with an antibody against PD revealed that treatment of the cells with an oxidant diamide induced the 35S incorporation into both mutants, suggesting the PD glutathionylation in cells. Since the two cysteine residues in PD are conserved in all Pax members, this novel posttranslational modification of PD would provide a new insight into molecular basis for modulation of Pax function.  相似文献   

14.
The S1235R locus in CFTR was studied in combination with alleles found at the M470V and G628R loci. While R628 caused a maturational defect, R1235 did not. The impact of R1235 was found to be influenced by the alleles present at the G628R and M470V loci. At the single channel level, R1235-V (R1235 on a V470 background) was characterized by an open probability significantly higher than V470-wildtype CFTR. M470, which on its own increases CFTR chloride transport activity when compared to V470-wildtype CFTR, suppressed the activity of R1235 in such a way that a protein with an open probability not significantly different from V470-wildtype CFTR was obtained. While R628-V CFTR had similar current densities as V470-wildtype CFTR in Xenopus laevis oocytes, R1235-V resulted in current densities that were more than twofold higher than those of V470-wildtype CFTR. However, the current densities generated by R1235/R628-V (R1235 and R628 on a V470 background) CFTR were significant lower than R1235-V or R628-V CFTR.  相似文献   

15.
The mouse Pax-3 gene encodes a protein that is a member of the Pax family of DNA binding proteins. Pax-3 contains two DNA binding domains: a paired domain (PD) and a paired type homeodomain (HD). Both domains are separated by 53 amino acids and interact synergistically with a sequence harboring an ATTA motif (binding to the HD) and a GTTCC site (binding to the PD) separated by 5 base pairs. Here we show that the interaction of Pax-3 with these two binding sites is independent of their angular orientation. In addition, the protein spacer region between the HD and the PD can be shortened without changing the spatial flexibility of the two DNA binding domains which interact with DNA. Furthermore, by using circular permutation analysis we determined that binding of Pax-3 to a DNA fragment containing a specific binding site causes conformational changes in the DNA, as indicated by the different mobilities of the Pax-3-DNA complexes. The ability to change the conformation of the DNA was found to be an intrinsic property of the Pax-3 PD and of all Pax proteins that we tested so far. These in vitro studies suggest that interaction of Pax proteins with their specific sequences in vivo may result in an altered DNA conformation.  相似文献   

16.
17.
MADS domain (for M CM1, A G, D EFA and S RF) proteins are regulatory proteins found in all major eukaryotic kingdoms. Plant MADS domain regulatory proteins have a region of moderate sequence similarity that has been designated as the K domain, and its predicted coiled-coil structure suggests a role in establishing a protein—protein interaction. In vivo studies with the Arabidopsis AGAMOUS (AG) protein have indicated that the K domain is important for AG function. Using a bait fusion protein containing the K domain and the C-terminal region of AG in a yeast two-hybrid selection, 156 clones that encode potential AG-interacting proteins were identified. These clones each encode one of four highly related MADS domain proteins: AGL2, AGL4, AGL6 and AGL9. Additional analysis showed that the K domain of AG alone was able to bind the K domains of these AGLs. This binding was further confirmed by immunoprecipitation experiments using in vitro synthesized AG and AGL K domains. These results strongly suggest that AG interacts with AGL2, AGL4, AGL6 and AGL9 in vivo. Based on these results and previous observations, it is proposed that the AG function requires interaction with at least one of these AGL proteins, and such interactions contribute to the functional specificity of the AG protein.  相似文献   

18.
Many Drosophila developmental genes contain a DNA binding domain encoded by the homeobox. This homeodomain contains a region distantly homologous to the helix-turn-helix motif present in several prokaryotic DNA binding proteins. We investigated the nature of homeodomain-DNA interactions by making a series of mutations in the helix-turn-helix motif of the Drosophila homeodomain protein Paired (Prd). This protein does not recognize sequences bound by the homeodomain proteins Fushi tarazu (Ftz) or Bicoid (Bcd). We show that changing a single amino acid at the C-terminus of the recognition helix is both necessary and sufficient to confer the DNA binding specificity of either Ftz or Bcd on Prd. This simple rule indicates that the amino acids that determine the specificity of homeodomains are different from those mediating protein-DNA contacts in prokaryotic proteins. We further show that Prd contains two DNA binding activities. The Prd homeodomain is responsible for one of them while the other is not dependent on the recognition helix.  相似文献   

19.
Pax3 contains two structurally independent DNA-binding domains, a paired domain (PD) and a homeodomain (HD). Biochemical and mutagenesis studies have shown that both domains are functionally interdependent. In particular, it has been shown that the PD can regulate the DNA-binding specificity and dimerization potential of the HD. To delineate Pax3 protein segments that are involved in the regulation of HD DNA-binding, a series of chimeric proteins were created in which the HD and linker region were gradually replaced with corresponding sequences from a heterologous HD protein, Phox. Characterization of chimeric proteins by electrophoretic mobility shift analysis (EMSA) suggests that a portion of the linker region contributes to the functional interaction between the PD and HD. In addition, stepwise removal of sequences from the Pax3 PD was used to define regions within this domain that are involved in the regulation of HD DNA-binding. EMSA of these proteins in the context of the chimeric Pax3/Phox backbone provided two key findings: (i) the C-terminal subdomain of the PD does not play a major role in the regulation of HD DNA-binding and (ii) the N-terminal subdomain and, in particular, the second alpha-helix are essential for modulation of HD DNA-binding. Significantly, deletion of helix 2 was found to be sufficient to uncouple regulation of HD DNA-binding by the PD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号