首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To probe the role of the Asp-99 ... His-48 pair in phospholipase A2 (PLA2) catalysis, the X-ray structure and kinetic characterization of the mutant Asp-99-->Asn-99 (D99N) of bovine pancreatic PLA2 was undertaken. Crystals of D99N belong to the trigonal space group P3(1)21 and were isomorphous to the wild type (WT) (Noel JP et al., 1991, Biochemistry 30:11801-11811). The 1.9-A X-ray structure of the mutant showed that the carbonyl group of Asn-99 side chain is hydrogen bonded to His-48 in the same way as that of Asp-99 in the WT, thus retaining the tautomeric form of His-48 and the function of the enzyme. The NH2 group of Asn-99 points away from His-48. In contrast, in the D102N mutant of the protease enzyme trypsin, the NH2 group of Asn-102 is hydrogen bonded to His-57 resulting in the inactive tautomeric form and hence the loss of enzymatic activity. Although the geometry of the catalytic triad in the PLA2 mutant remains the same as in the WT, we were surprised that the conserved structural water, linking the catalytic site with the ammonium group of Ala-1 of the interfacial site, was ejected by the proximity of the NH2 group of Asn-99. The NH2 group now forms a direct hydrogen bond with the carbonyl group of Ala-1.  相似文献   

2.
Site-directed mutagenesis was used to probe the structural and functional roles of two highly conserved residues, Tyr-52 and Tyr-73, in interfacial catalysis by bovine pancreatic phospholipase A2 (PLA2, overproduced in Escherichia coli). According to crystal structures, the side chains of these two active site residues form H-bonds with the carboxylate of the catalytic residue Asp-99. Replacement of either or both Tyr residues by Phe resulted in only very small changes in catalytic rates, which suggests that the hydrogen bonds are not essential for catalysis by PLA2. Substitution of either Tyr residue by nonaromatic amino acids resulted in substantial decreases in the apparent kcat toward 1,2-dioctanoyl-sn-glycero-3-phosphocholine (DC8PC) micelles and the v(o) (turnover number at maximal substrate concentration, i.e., mole fraction = 1) toward 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DC14PM) vesicles in scooting mode kinetics [Berg, O. G., Yu, B.-Z., Rogers, J., & Jain, M. K. (1991) Biochemistry 30, 7283-7297]. The Y52V mutant was further analyzed in detail by scooting mode kinetics: the E to E* equilibrium was examined by fluorescence; the dissociation constants of E*S, E*P, and E*I (KS*, KP*, and KI*, respectively) in the presence of Ca2+ were measured by protection of histidine-48 modification and by difference UV spectroscopy; the Michaelis constant KM* was calculated from initial rates of hydrolysis in the absence and presence of competitive inhibitors; and the turnover number under saturating conditions (kcat, which is a theoretical value since the enzyme may not be saturated at the interface) was calculated from the vo and KM* values. The results indicated little perturbation in the interfacial binding step (E to E*) but ca. 10-fold increases in KS*, KP*, KI*, and KM* and a less than 10-fold decrease in kcat. Such changes in the function of Y52V are not due to global conformational changes since the proton NMR properties of Y52V closely resemble those of wild-type PLA2; instead, it is likely to be caused by perturbed enzyme-substrate interactions at the active site. Tyr-73 appears to play an important structural role. The conformational stability of all Tyr-73 mutants decreased by 4-5 kcal/mol relative to that of the wild-type PLA2. The proton NMR properties of Y73A suggested significant conformational changes and substantially increased conformational flexibility. These detailed structural and functional analyses represent a major advancement in the structure-function study of an enzyme involved in interfacial catalysis.  相似文献   

3.
Tyr52 and Tyr73 are conserved amino acid residues throughout all vertebrate phospholipases A2. They are part of an extended hydrogen bonding system that links the N-terminal alpha-NH3(+)-group to the catalytic residues His48 and Asp99. These tyrosines were replaced by phenylalanines in a porcine pancreatic phospholipase A2 mutant, in which residues 62-66 had been deleted (delta 62-66PLA2). The mutations did not affect the catalytic properties of the enzyme, nor the folding kinetics. The stability against denaturation by guanidine hydrochloride was decreased, however. To analyse how the enzyme compensates for the loss of the tyrosine hydroxyl group, the X-ray structures of the delta Y52F and delta Y73F mutants were determined. After crystallographic refinement the final crystallographic R-factors were 18.1% for the delta Y52F mutant (data between 7 and 2.3 A resolution) and 19.1% for the delta Y73F mutant (data between 7 and 2.4 A resolution). No conformational changes occurred in the mutants compared with the delta 62-66PLA2, but an empty cavity formed at the site of the hydroxyl group of the former tyrosine. In both mutants the Asp99 side chain loses one of its hydrogen bonds and this might explain the observed destabilization.  相似文献   

4.
The alpha-amylase family is a large group of starch processing enzymes [Svensson, B. (1994) Plant Mol. Biol. 25, 141-157]. It is characterized by four short sequence motifs that contain the seven fully conserved amino acid residues in this family: two catalytic carboxylic acid residues and four substrate binding residues. The seventh conserved residue (Asp135) has no direct interactions with either substrates or products, but it is hydrogen-bonded to Arg227, which does bind the substrate in the catalytic site. Using cyclodextrin glycosyltransferase as an example, this paper provides for the first time definite biochemical and structural evidence that Asp135 is required for the proper conformation of several catalytic site residues and therefore for activity.  相似文献   

5.
The aminoglycoside antibiotics such as neomycin, gentamicin, kanamycin and streptomycin stimulated the purified enzyme phosphatidylinositol-specific phospholipases C from Bacillus thuringiensis at pH 5.5. The involvement of net positive charge of aminoglycoside antibiotics (AA) on phosphatidylinositol-specific phospholipases C activation was probed by modifying the carboxyl group of Asp and Glu present in the enzyme by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC). Intrinsic Trp fluorescence of EDAC modified and unmodified PI-PLC in the presence of AA confirmed the interaction of AA with side chain carboxyl group of aspartic and glutamic acid of the enzyme. Thus, the possible interaction of aminoglycoside antibiotics with phosphatidylinositol-specific phospholipases C is predicted to be mediated through the aspartic and glutamic acid residue(s) of the protein.  相似文献   

6.
Phi 29 DNA polymerase shares with other alpha-like DNA polymerases several regions of amino acid similarity. Among them, the two conserved regions characterized by the amino acid motifs "D-NSLYP" and "K--NS(L/V)YG," regions 1 and 2a, respectively, according to Blanco et al. (Blanco, L., Bernad, A., Blasco, M. A. and Salas, M. (1991) Gene (Amst.) 100, 27-38) have been proposed to be part of the polymerization active site of alpha-like DNA polymerases. One phi 29 DNA polymerase mutant in residue Tyr254, located in conserved region 1, and two mutants in residue Tyr390, located in conserved region 2a, have been characterized. The three phi 29 DNA polymerase mutant proteins were affected in polymerization when Mg(2+)-dNTPs were used as substrate. However, when the substrate was Mn(2+)-dNTP, mutants behaved as the wild-type phi 29 DNA polymerase. Mutant Tyr254 to Phe (Y254F) was strongly affected in the protein-primed initiation step of phi 29 DNA replication showing a decreased affinity for Me(2+)-dATP, the initiating nucleotide. Furthermore, the analysis of the template-independent deoxynucleotidylation of the TP by Y254F mutant polymerase is consistent with a change in the relative affinity for dNTPs. On the other hand, mutants Y390F and Y390S were found to be hypersensitive to the dNTP analogs 2-(p-n-butylanilino)dATP and N2-(p-n-butyl-phenyl)dGTP. The results obtained indicate that residues Tyr254 and Tyr390 are involved, directly or indirectly, in Me(2+)-dNTP binding.  相似文献   

7.
Pigeon liver malic enzyme was inactivated and cleaved at Asp141, Asp194, and Asp464 by the Cu2+-ascorbate system in acidic environment. Site-specific mutagenesis was performed at these putative metal-binding sites. Three point mutants, D141N, D194N, and D464N; three double mutants, D(141,194)N, D(194,464)N, and D(141,464)N; and a triple mutant, D(141,194,464)N; as well as the wild-type malic enzyme (WT) were successfully cloned and expressed in Escherichia coli cells. All recombinant enzymes, except the triple mutant, were purified to apparent homogeneity by successive Q-Sepharose and adenosine-2',5'-bisphosphate-agarose columns. The mutants showed similar apparent Km,NADP values to that of the WT. The Km,Mal value was increased in the D141N and D194N mutants. The Km,Mn value, on the other hand, was increased only in the D141N mutant by 14-fold, corresponding to approximately 1.6 kcal/mol for the Asp141-Mn2+ binding energy. Substrate inhibition by L-malate was only observed in WT, D464N, and D(141,464)N. Initial velocity experiments were performed to derive the various kinetic parameters. The possible interactions between Asp141, Asp194, and Asp464 were analyzed by the double-mutation cycles and triple-mutation box. There are synergistic weakening interactions between Asp141 and Asp194 in the metal binding that impel the D(141,194)N double mutant to an overall specificity constant [k(cat)/(Kd,Mn Km,Mal Km,NADP)] at least four orders of magnitude smaller than the WT value. This difference corresponds to an increase of 6.38 kcal/mol energy barrier for the catalytic efficiency. Mutation at Asp464, on the other hand, has partial additivity on the mutations at Asp141 and Asp194. The overall specificity constants for the double mutants D(194,464)N and D(141,464)N or the triple mutant D(141,194,464)N were decreased by only 10- to 100-fold compared to the WT. These results strongly suggest the involvement of Asp141 in the Mn2+-L-malate binding for the pigeon liver malic enzyme. The Asp194 and Asp464, which may be oxidized by nonspecific binding of Cu2+, are involved in the Mn2+-L-malate binding or catalysis indirectly by modulating the binding affinity of Asp141 with the Mn2+.  相似文献   

8.
Computer simulations of Gelin and Karplus ((1977) Proc. Natl. Acad. Sci. U.S.A. 74, 801-805) suggest that in hemoglobin upon ligation the penultimate tyrosyl residues of the subunits are not expelled from the hydrophobic pockets described in the crystals between the helices E and F (Perutz, M.F. (1970) Nature 228, 726-737). This implies that both the liganded and unliganded conformations of hemoglobin may be affected by mutations involving such residues. Investigation of the conformational behavior of liganded and unliganded hemoglobin Osler was conducted measuring the functional properties, the subunits dissociation, the CD and electronic spectra, the protons absorption upon interaction with polyanions, and the reactivity of the -SH groups of the protein. The results suggest that both the liganded and unliganded conformations of the system are affected by the mutation, confirming the anticipations of Gelin and Karplus on the relevance of tyrosine at beta 145 for both allosteric states of hemoglobin.  相似文献   

9.
The luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein hormone receptors share a common modular topography, with an N-terminal extracellular ligand binding domain and a C-terminal seven-transmembrane transduction domain. The ligand binding domain consists of 9 leucine-rich repeats, flanked by N- and C-terminal cysteine-rich regions. Recently, crystal structures have been published of the extracellular domains of the FSH and TSH receptors. However, the C-terminal cysteine-rich region (CCR), also referred to as the "hinge region," was not included in these structures. Both structure and function of the CCR therefore remain unknown. In this study we set out to characterize important domains within the CCR of the LH receptor. First, we mutated all cysteines and combinations of cysteines in the CCR to identify the most probable disulfide bridges. Second, we exchanged large parts of the LH receptor CCR by its FSH receptor counterparts, and characterized the mutant receptors in transiently transfected HEK 293 cells. We zoomed in on important regions by focused exchange and deletion mutagenesis followed by alanine scanning. Mutations in the CCR specifically decreased the potencies of LH and hCG, because the potency of the low molecular weight agonist Org 41841 was unaffected. Using this unbiased approach, we identified Asp(330) and Tyr(331) as key amino acids in LH/hCG mediated signaling.  相似文献   

10.
Sequence comparison showed that residues Thr407, Asp433, and Met464 in the small subunit of Escherichia coli gamma-glutamyltranspeptidase (EcGGT) were conserved in the aligned enzymes. In this study, we further investigated the functional significance of these conserved residues by site-directed mutagenesis. The wild-type and mutant enzymes were overexpressed in the recombinant E. coli M15 cells and purified to near homogeneity by Ni2+-NTA resin. Except M464L, other mutants had shown no GGT activity under enzyme assay conditions and activity staining. Furthermore, mutations on these residues impaired the capability of autocatalytic processing of the enzyme. Based on these observations, it is concluded that these residues play an important role in the enzyme maturation.  相似文献   

11.
Yu BZ  Rogers J  Tsai MD  Pidgeon C  Jain MK 《Biochemistry》1999,38(15):4875-4884
Primary rate and equilibrium parameters for 60 site-directed mutants of bovine pancreatic phospholipase A2 (PLA2) are analyzed so incremental contributions of the substitution of specific residues can be evaluated. The magnitude of the change is evaluated so a functional role in the context of the N- and C-domains of PLA2 can be assigned, and their relationship to the catalytic residues and to the i-face that makes contact with the interface. The effect of substitutions and interfacial charge is characterized by the equilibrium dissociation constant for dissociation of the bound enzyme from the interface (Kd), the dissociation constant for dissociation of a substrate mimic from the active site of the bound enzyme (KL), and the interfacial Michaelis constants, KM and kcat. Activity is lost (>99.9%) on the substitution of H48 and D49, the catalytic residues. A more than 95% decrease in kcat is seen with the substitution of F5, I9, D99, A102, or F106, which form the substrate binding pocket. Certain residues, which are not part of the catalytic site or the substrate binding pocket, also modulate kcat. Interfacial anionic charge lowers Kd, and induces kcat activation through K56, K53, K119, or K120. Significant changes in KL are seen by the substitution of N6, I9, F22, Y52, K53, N71, Y73, A102, or A103. Changes in KM [=(k2+k-1)/k1] are attributed to kcat (=k2) and KL (=k-1/k1). Some substitutions change more than one parameter, implying an allosteric effect of the binding to the interface on KS, and the effect of the interfacial anionic charge on kcat. Interpreted in the context of the overall structure, results provide insights into the role of segments and domains in the microscopic events of catalytic turnover and processivity, and their allosteric regulation. We suggest that the interfacial recognition region (i-face) of PLA2, due to the plasticity of certain segments and domains, exercises an allosteric control on the substrate binding and chemical step.  相似文献   

12.
Bothropstoxin-II a calcium-dependent enzyme from Bothrops jararacussu venom causes tissue damage and several haemostatic disorders including platelet aggregation. In order to elucidate the structural determinants of its multiple pharmacological activities, we have studied the effects of suramin on Bothropstoxin-II and present details concerning the mode of binding.  相似文献   

13.
Lin FP  Chen HC  Lin CS 《IUBMB life》1999,48(2):199-204
Site-directed mutagenesis was used to explore the roles of amino acid residues involved in the activity of chitinase from Aeromonas caviae. Kinetic parameters for 4-methylumbelliferyl-N,N'-diacetyl-chitobiose or 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and mutant chitinases. Chitinases with the mutations E315D (or Q) and D391E (or N) were severely impaired and had dramatically decreased kcat. However, the effect of the these mutations on the Km values were different. The function of the carboxyl group of Asp313 was partially replaced by the amide of Asn when the 4-methylumbelliferyl-N,N',N"-triacetylchitotriose substrate was used. Results indicated that Asp313, Glu315, and Asp391 might be the best candidates for the catalytic residues of chitinase A from Aeromonas caviae.  相似文献   

14.
Cyanobacteria belong to an extremely diverse group of gram-negative prokaryotes. They are all able to perform oxygen-evolving photosynthesis, but differ in morphology, ecological habitats, and physiology. This diversity is also reflected in the complexity of regulatory proteins involved in protein phosphorylation on Ser, Thr and Tyr residues. For those strains whose genomes are completely sequenced, for example, the number of genes identified so far that encode Ser/Thr and Tyr kinases range from none to 52. Genetic, molecular as well as functional genomic analyses demonstrate that Ser/Thr and Tyr kinases and phosphatases are involved in the regulation of a variety of activities according to changes in growth conditions or cell metabolism, such as cell motility, carbon and nitrogen metabolism, photosynthesis and stress response. The major challenge in the near future is to integrate these components into signaling pathways and identify their targets. Some of the Ser/Thr and Tyr kinases and phosphatases are expected to interact with classical two-component signaling pathways.  相似文献   

15.
Phospholipase B1 (PLB1), secreted by the pathogenic yeast Cryptococcus neoformans, has an established role in virulence. Although the mechanism of its phospholipase B, lysophospholipase, and lysophospholipase transacylase activities is unknown, it possesses lipase, subtilisin protease aspartate, and phospholipase motifs containing putative catalytic residues S146, D392, and R108, respectively, conserved in fungal PLBs and essential for human cytosolic phospholipase A2 (cPLA2) catalysis. To determine the role of these residues in PLB1 catalysis, each was substituted with alanine, and the mutant cDNAs were expressed in Saccharomyces cerevisiae. The mutant PLB1s were deficient in all three enzymatic activities. As the active site structure of PLB1 is unknown, a homology model was developed, based on the X-ray structure of the cPLA2 catalytic domain. This shows that the two proteins share a closely related fold, with the three catalytic residues located in identical positions as part of a single active site, with S146 and D392 forming a catalytic dyad. The model suggests that PLB1 lacks the "lid" region which occludes the cPLA2 active site and provides a mechanism of interfacial activation. In silico substrate docking studies with cPLA2 reveal the binding mode of the lipid headgroup, confirming the catalytic dyad mechanism for the cleavage of the sn-2 ester bond within one of two separate binding tracts for the lipid acyl chains. Residues specific for binding arachidonic and palmitic acids, preferred substrates for cPLA2 and PLB1, respectively, are identified. These results provide an explanation for differences in substrate specificity between lipases sharing the cPLA2 catalytic domain fold and for the differential effect of inhibitors on PLB1 enzymatic activities.  相似文献   

16.
Tryptophan (Trp) fluorescence of two phospholipases A2 (PLA2) from Naja naja atra and Naja nigricollis snake venoms was quenched by acrylamide and iodide. Trp residues in N. naja atra PLA2 were equally accessible to acrylamide and iodide. Iodide quenching studies indicate that there are two classes of Trp fluorophores in N. nigricollis CMS-9. The accessible class consists of Trp-18 and Trp-19. Removal of the N-terminal octapeptide caused a perturbation of the micro-environment of the Trp residues in the PLA2 enzymes. The presence of a substrate lowers the susceptibility of the Trp residues to iodide quenching in N. naja atra PLA2, suggesting that all three Trp residues are at the substrate binding site, but in N. nigricollis CMS-9 Trp-18 and Trp-19 are related to substrate binding.  相似文献   

17.
Voltage-dependent K+ channels consist of a voltage-sensing region and a pore-forming region. Here we have identified the negative residues of the second transmembrane segment in the plant voltage-dependent K+ channel, KAT1, which involves the function of voltage sensing. Point mutations at D95 and D105 but not D89 and D116 failed to complement the K+ uptake deficient properties of the mutant yeast. In vitro translation and translocation experiments showed that the membrane integration of the third and fourth segments involving voltage sensor were impaired by the replacement of D95 or D105 by serine. These data show that both the residues play a crucial role in the membrane topogenesis of the voltage sensor in KAT1.  相似文献   

18.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3.  相似文献   

19.
20.
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号