首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hypotheses were tested that the deficit in maximum isometric force normalized to muscle cross-sectional area (i.e., specific Po, N/cm2) of hypertrophied muscle would return to control value with time and that the rate and magnitude of adaptation of specific force would not differ between soleus and plantaris muscles. Ablation operations of the gastrocnemius and plantaris muscles or the gastrocnemius and soleus muscles were done to induce hypertrophy of synergistic muscle left intact in female Wistar rats (n = 47) at 5 wk of age. The hypertrophied soleus and plantaris muscles and control muscles from other age-matched rats (n = 22) were studied from days 30 to 240 thereafter. Po was measured in vitro at 25 degrees C in oxygenated Krebs-Ringer bicarbonate. Compared with control values, soleus muscle cross-sectional area increased 41-15% from days 30 to 240 after ablation, whereas Po increased 11 and 15% only at days 60 and 90. Compared with control values, plantaris muscle cross-sectional area increased 52% at day 30, 40% from days 60 through 120, and 15% at day 240. Plantaris muscle Po increased 25% from days 30 to 120 but at day 240 was not different from control value. Changes in muscle architecture were negligible after ablation in both muscles. Specific Po was depressed from 11 to 28% for both muscles at all times. At no time after the ablation of synergistic muscle did the increased muscle cross-sectional area contribute fully to isometric force production.  相似文献   

2.
In rats,combinations of plantar flexor muscles representing ~20, 40, 60, and80% of the mass of the total plantar flexor group were transferredorthotopically in the absence of synergistic muscles and allowed torecover for 120 days. We hypothesized that, compared with theirindividual control values for structural and functional variables, thetransfers would display a hierarchical array of deficits, proportionalto their initial mass and, consequently, inversely proportional to therelative load on the transfers. Surprisingly, compared with theirindividual control values, each muscle transfer displayed deficits of30-40% in muscle mass, total fiber cross-sectional area, andmaximum isometric force, with the exception of the smallest transfer,the plantaris (PLN) muscle, which recovered 100% of its control valuefor each of these variables. Therefore, except for the PLN transfer,the muscle transfers studied displayed deficits similar in magnitude tothose reported for muscles transferred in the presence of synergisticmuscles. The greater recovery of the PLN transfer was attributed to therelatively large requirement for force production imposed on thistransfer due to the average force requirements of the total plantarflexor group.

  相似文献   

3.
Hindlimb unweighting is a commonly used model to study skeletal muscle atrophy associated with disuse and exposure to microgravity. However, a discrepancy in findings between single fibers and whole muscle has been observed. In unweighted solei, specific tension deficits are greater in whole muscle than in single fibers. Also, metabolic enzyme activity when normalized per gram of mass is depressed in whole muscle but not in single fibers. These observations suggest that soleus muscle interstitial fluid volume may be elevated with atrophy caused by unweighting in rats. The purpose of this study was to determine if soleus muscle atrophy induced by unweighting is accompanied by alterations in muscle interstitial fluid volume and to calculate the effect of any such alterations on the muscle specific tension (N/cm2 muscle cross-sectional area). Nine female Wistar rats (200 g) were hindlimb unweighted (HU) by tail suspension. Soleus muscles were studied after 28 days and compared with those from five age-matched control (C) rats. Interstitial fluid volume ([3H]inulin space) and maximum tetanic tension (Po) were measured in vitro at 25 degrees C. Soleus muscles atrophied 58% because of unweighting (C = 147.8 +/- 2.3 mg; HU = 62.3 +/- 3.6 mg, P less than 0.001). Relative muscle interstitial fluid volume increased 107% in HU rats (35.5 +/- 2.8 microliters/100 mg wet mass) compared with the control value of 17.2 +/- 0.5 microliters/100 mg (P less than 0.001); however, absolute interstitial fluid volume (microliters) was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have studied the contractile properties, structure, fiber-type composition, and myosin heavy chain (MyHC) expression pattern of regenerating and intact soleus muscles of adult CBA/J mice treated with cyclosporin A (CsA) or vehicle solutions (Cremophor, saline). A comparison of muscles after 4-7 weeks drug application with those receiving vehicle showed that the isometric contractile force of intact drug-treated muscles was reduced (tetanus, -21%; twitch, -34%) despite normal mass and muscle cross-sectional area. The frequency of fast-twitch fibers was increased, whereas no innervation deficits, histopathological alterations, or changes in fiber numbers were observed. Regeneration after cryolesion of the contralateral soleus proceeded more slowly in CsA-treated than in vehicle-treated animals. Despite this, when muscle properties reached mature levels (4-7 weeks), muscle mass recovery was better in CsA-treated animals (30% higher weight, 50% more fiber profiles in cross-sections). The force production per unit cross-sectional area was deficient, but not the maximum tension. Twitch time-to-peak and half-relaxation time were shorter than controls correlating with a predominance of fast-twitch fibers (98% Type II fibers versus 16%-18% in control muscles) and fast MyHC isoforms. Partial reversal of this fast phenotype and an increase in muscle force were observed when the animals were left to recover without treatment for 5-8 weeks after CsA application over 7 weeks. The high numbers of fiber profiles in CsA-treated regenerated muscles and increased mass remained unchanged after withdrawal. Thus, CsA treatment has a hyperplastic effect on regenerating muscles, and drug-induced phenotype alterations are much more prominent in regenerated muscles.  相似文献   

5.
We hypothesized that the mass and maximum tetanic tension (Po) of nerve-intact grafts overloaded by ablation of synergistic muscles would be greater than that of standard nerve-intact grafts or of control soleus muscles. Soleus muscles were grafted orthotopically and bilaterally in 35 female rats. Control soleus muscles were obtained from 30 age-matched cohorts. Twenty-eight days following grafting, gastrocnemius muscles were ablated bilaterally in half of the animals. Comparisons were made between 28 and 112 days following grafting. By 112 days the wet mass of the overload nerve-intact grafts was 138% of the standard grafts and 152% of the control soleus muscles, whereas the Po was 161% and 107%, respectively. Specific tension stabilized at approximately 19 +/- 1 N/cm2 for both types of grafts, significantly lower than the value of 24 +/- 1 N/cm2 for control soleus muscles. Ablation of synergistic muscles resulted in a significant and sustained increase in mass and Po in regenerating skeletal muscle autografts. We conclude that provided the appropriate conditioning stimulus small grafts (100-200 mg) are capable of achieving the values for the mass and Po of control muscles.  相似文献   

6.
Histochemical and contractile properties of developing rat soleus (Sol) and plantaris (P) muscles were studied after hindlimb suspension to determine the effects of reduced activity levels on muscle development. Suspension (S) began at age 18 days and lasted for 14, 28, and 206 days, and results were compared with age-matched controls. Body weights were normal until 14 days and Sol growth was inhibited more than P, weighing 38 and 47% of controls at 46 and 224 days compared with 68 and 59% in P. The Sol did not develop into a slow-twitch (ST) muscle as evidenced by faster times to peak tension and half-relaxation times, faster times to develop 50% of maximum tetanic tension (Po) and a mean of 33% fewer ST fibers. Twitch tension and Po were lower in S-Sol and S-P, but force/cross-sectional area was unchanged. Fiber areas were smaller, but no structural changes characteristic of disuse atrophy were found. Fiber type populations were unchanged in P, and contractile properties were only minimally affected, demonstrating the greater importance of activity for ST muscles during development.  相似文献   

7.
The present study was designed to determine the contribution of weight bearing to the adaptations of the plantaris (PL) to synergist removal. PL from female rats were exposed to 28 days of a simultaneous condition of synergist ablation and hindlimb suspension. At 28 days, contractile responses and morphological measures were obtained and compared with muscles that either had synergists intact or were weight bearing or a combination of both. Synergist ablation prolonged PL maximum isometric twitch tension (Pt), time to peak tension (12%), and one-half relaxation time (12%); increased Pt (26%), maximum isometric tetanic tension (Po, 44%), fatigue resistance (FI, 42%), and fast fiber cross-sectional area (FT CSA, 20%); and decreased Pt/Po (13%) over nonablation counterparts. Suspension decreased PL Pt (26%), Po (26%), rest length (16%), FT CSA (31%), and slow-twitch fiber (ST) number (24%) but increased FI (75%) over weight-bearing counterparts. PL from weight-bearing animals were heavier than from suspended animals, and the extent of this response was greatest after synergist removal. Whole muscle and ST CSA and ST area contribution were greater only in weight-bearing synergist ablation muscles. Daily weight bearing (4 h) in synergist ablation hindlimb suspension groups caused PL weights and ST expressions to be halfway between 24-h suspension and 24-h weight-bearing groups. Our results suggest that weight bearing is not essential to the induction of several adaptations associated with synergist ablation but is required to cause the large muscle mass and ST expression characteristic of this model.  相似文献   

8.
Compensatory hypertrophy of the rat plantaris muscle (PLT) was induced by ipsilateral gastrocnemius muscle ablation. Following 8 weeks (wks) of hypertrophy, hindlimbs were cast immobilized (HI) for 4 weeks after which weight bearing was unrestricted for 8 wks (recovery). Compensatory hypertrophy increased PLT wet weight/body weight ratio (83%), muscle fiber cross-sectional areas (1.5 to 2 fold), and the percent of slow oxidative (% SO) fibers (2 fold) in the experimental compared to the contralateral sham control muscle. PLT protein content and maximal activities of phosphofructokinase (PFK), mitochondrial glycerol phosphate dehydrogenase, and succinate dehydrogenase were unaltered with muscle hypertrophy. HI produced significant decreases in PFK activity (50%) and muscle fiber cross-sectional areas (50%) but did not significantly change the histochemical myofibrillar ATPase profile. Following remobilization, muscle weight/body weight ratio and maximal enzyme activities recovered to that of aged matched controls. Muscle fiber areas returned to pre-immobilization sizes but were approximately 25% smaller than aged matched control hypertrophy muscles. The % SO fibers in the hypertrophied muscle remained higher than controls but did not return to pre-immobilization values. These results indicate that biochemical and histochemical characteristics of hypertrophied rat PLT recover from HI during 8 wks of normal weight bearing similar to that of normal control muscle. However, the recovery time period was insufficient to allow complete compensation of fiber size to that of the age-matched control animals.  相似文献   

9.
By the age of 80 yr, the skeletal muscles of men and women decrease in mass and maximum force by approximately 30%. Severe contraction-induced injury may contribute to these age-related declines. One to two months after a 225 lengthening contraction protocol (LCP), muscles of young/adult male mice recovered completely, whereas those of old male mice sustained deficits of approximately 15% in mass and approximately 25% in maximum force. Although gender-related differences in the early events of contraction-induced injury have been reported, the recovery phase of muscles in old female animals has not been investigated. The hypothesis tested was that 2 mo after a severe LCP to the plantar flexor muscle group, the magnitude of recovery of mass and force for old female mice is less than that for adult female mice. The LCP was administered to muscles of adult and old, female C57BL/6 mice. At 3 days, 1 mo, and 2 mo following the LCP, maximum isometric force was measured, and muscles were removed and weighed. Two months following the LCP, the muscles of adult female mice recovered mass and force. In contrast, for old female mice, even after 2 mo, muscle masses were decreased by 11% and maximum forces by 38%. We conclude that, as reported previously for old male mice, a severe contraction-induced injury to muscles of old female mice results in prolonged deficits in mass and force.  相似文献   

10.
The authors hypothesized that distraction at a rate of 3 mm/day, compared with mandibular distraction at a rate of 1 mm/day, would produce a maladaptive response in adjacent muscles of mastication. The authors further hypothesized that the maladaptive response would manifest at the single fiber level by means of increased sarcomeric heterogeneity, decreased maximum force output, and increased susceptibility to stretch-induced injury. In an ovine model, distraction osteogenesis of the right hemimandible was performed at either 1 mm/day for 21 days (n = 2) or 3 mm/day for 7 days (n = 2) to achieve a total distraction distance of 21 mm. The left hemimandibles served as controls. After a consolidation period of 2 days, the anterior digastric muscles were harvested; in six randomly selected single fibers from each muscle, maximum calcium-activated force (Po) was measured at optimal sarcomere length. The amount of damage to the sarcomeres in each fiber was assessed microscopically. To test susceptibility to contraction-induced injury, each fiber was given an activated stretch of 20 percent. Compared with control fibers and fibers distracted at 1 mm/day, maximum tetanic force (Po) was significantly lower in fibers distracted at 3 mm/day. Compared with control fibers, specific Po (Po/cross-sectional area) was lower in fibers distracted at 3 mm/day. The number of sarcomeres appearing damaged in fibers distracted at 3 mm/day was significantly higher than in control fibers or in fibers distracted at 1 mm/day. A greater deficit in Po was observed after a single activated stretch in fibers distracted at 3 mm/day than in control fibers or in fibers distracted at 1 mm/day. The authors conclude that distraction of the anterior digastric muscle in sheep at 3 mm/day produces a maladaptive response in the muscle fibers but a rate of 1 mm/day is tolerated by the muscle fibers. These data are consistent with the hypothesis that distraction of skeletal muscle at high rates results in increased heterogeneity of sarcomere lengths and that this increase in heterogeneity is the most likely potential mechanism resulting in whole muscle force deficits and in increased susceptibility to stretch-induced injury in distracted muscles.  相似文献   

11.
Comparisons of soleus and extensor digitorum longus (EDL) muscles from male Sprague-Dawley rats (350-400 g) after 7 days of weightlessness, 7 and 14 days of whole body suspension (WBS), and 7 days of recovery from WBS and from vivarium controls were made. Muscle mass loss of approximately 30% was observed in soleus after 7 and 14 days of WBS. Measurement of slow- and fast-twitch fibers showed significant alterations. Reductions in cross-sectional areas and increases in fiber densities in soleus after spaceflight and WBS were related to previous findings of muscle atrophy during unloading. Capillary density also showed a marked increase with unloading. Seven days of weightlessness were sufficient to effect a 20 and 15% loss in absolute muscle mass in soleus and EDL, respectively. However, the antigravity soleus was more responsive in terms of cross-sectional area reductions. After 7 days of recovery from WBS, with normal ambulatory loading, the parameters studied showed a reversal to control levels. Muscle plasticity, in terms of fiber and capillary responses, indicated differences in responses in the two types of muscles and further amplified that antigravity posture muscles are highly susceptible to unloading. Studies of recovery from spaceflight for both muscle metabolism and microvascular modifications are further justified.  相似文献   

12.
The objectives were to study morphological adaptations of soleus muscle to decreased loading induced by hindlimb suspension and the effect of run training during the subsequent recovery period. Adult female Wistar rats were kept for 28 days with hindlimbs suspended. For the next 28 days, rats were assigned to a cage-sedentary or daily running group. Compared with control soleus muscles, 28 days of hindlimb suspension reduced the mass and fiber cross-sectional area to 58 and 53% of control values, respectively, and decreased type I fibers from 92 +/- 2 to 81 +/- 2%. During recovery, clusters of damaged fibers were observed in the soleus muscle, and this observation was more pronounced in trained animals. Type IIc fibers appeared transiently during recovery, and their presence was exacerbated with training, as IIc fibers increased to approximately 20% of the total by day 14 of recovery and were no longer evident at day 28. Although muscle wet mass does not differ as a result of mode of recovery at day 14, training transiently decreased the overall fiber area compared with sedentary recovery at this point. By day 28 of recovery the morphological characteristics of soleus muscle in the trained group did not differ from control muscle, whereas in the sedentary group muscle mass and overall fiber cross-sectional area were approximately 14% less than control values.  相似文献   

13.
To better understand how atrophied muscles recover from prolonged nonweight-bearing, we studied soleus muscles (in vitro at optimal length) from female rats subjected to normal weight bearing (WB), 15 days of hindlimb unloading (HU), or 15 days HU followed by 9 days of weight bearing reloading (HU-R). HU reduced peak tetanic force (P(o)), increased maximal shortening velocity (V(max)), and lowered peak power/muscle volume. Nine days of reloading failed to improve P(o), while depressing V(max) and intrinsic power below WB levels. These functional changes appeared intracellular in origin as HU-induced reductions in soleus mass, fiber cross-sectional area, and physiological cross-sectional area were partially or completely restored by reloading. We calculated that HU-induced reductions in soleus fiber length were of sufficient magnitude to overextend sarcomeres onto the descending limb of their length-tension relationship upon the resumption of WB activity. In conclusion, the force, shortening velocity, and power deficits observed after 9 days of reloading are consistent with contraction-induced damage to the soleus. HU-induced reductions in fiber length indicate that sarcomere hyperextension upon the resumption of weight-bearing activity may be an important mechanism underlying this response.  相似文献   

14.
Our goal was to determine the influence of a complete lack of neuromuscular activity, during a period of rapid muscle growth, on muscle morphology and contractile function. Rats, 21 days old, had one hindlimb paralyzed for a period of 7-9 consecutive days by repetitive implantation of a silastic cuff containing tetrodotoxin (TTX), a specific nerve impulse conduction blocker, around the sciatic nerve. In situ isometric contractile properties of gastrocnemius were measured at 31 days of age, and muscles were subsequently examined histologically. Normal growth during this period resulted in a two- to three-fold increase in muscle weights, mean muscle fiber cross-sectional areas and increases in absolute twitch and tetanic tensions. After inactivity from 21 to 30 days of age, gastrocnemius muscles were smaller, and tetanically weaker, than age-matched controls. The normal cross-sectional area increase of fast-twitch fibers was preferentially affected. Inactive muscles also demonstrated significantly slower twitch responses, had higher twitch:tetanus ratios and relative tensions at 25 Hz than age-matched controls, suggesting a "slower" contractile response. On the other hand, maximum rate of tetanic tension development was elevated. These effects of inactivity appeared to be reversed by resumption of normal activity for 4 days. Neuromuscular inactivity during a relatively short period of rapid muscle growth causes significant muscle morphological and contractile changes, which are most likely reversible.  相似文献   

15.
With aging, the skeletal muscles of humans sustain decreases of approximately 30% in mass and maximum force. Contraction-induced injury may contribute to these declines. When a 225 lengthening contraction protocol (LCP) was administered to small, non-weight-bearing muscles of mice, muscles of young/adult mice recovered completely, whereas those of old mice sustained permanent deficits of 20% in muscle mass and maximum force. Despite these observations, whether a large, frequently recruited, weight-bearing muscle sustains such permanent damage is not known. The hypothesis tested is that after a severe contraction-induced injury, large, weight-bearing muscles of old mice sustain permanent reductions in mass and force. The LCP was administered to plantar flexor muscles of adult and old, male C57BL/6 mice. At 3 days, 1 mo, and 2 mo after the LCP, maximum isometric forces were measured, anesthetized mice were euthanized, and muscles were removed and weighed. Two months after the LCP, the muscles of the adult mice regained control values of mass and force, whereas for muscles of old mice the mass decreased by 24% and the maximum force decreased by 32%. We conclude that a severe contraction-induced injury to large, weight-bearing muscles of old mice causes permanent deficits in mass and force.  相似文献   

16.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

17.
To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.  相似文献   

18.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

19.
We tested the hypothesis that lengthening contractions and subsequent muscle fiber degeneration and/or regeneration are required to induce exercise-associated protection from lengthening contraction-induced muscle injury. Extensor digitorum longus muscles in anesthetized mice were exposed in situ to repeated lengthening contractions, isometric contractions, or passive stretches. Three days after lengthening contractions, maximum isometric force production was decreased by 55%, and muscle cross sections contained a significant percentage (18%) of injured fibers. Neither isometric contractions nor passive stretches induced a deficit in maximum isometric force or a significant number of injured fibers at 3 days. Two weeks after an initial bout of lengthening contractions, a second identical bout produced a force deficit (19%) and a percentage of injured fibers (5%) that was smaller than those for the initial bout. Isometric contractions and passive stretches also provided protection from lengthening contraction-induced injury 2 wk later (force deficits = 35 and 36%, percentage of injured fibers = 12 and 10%, respectively), although the protection was less than that provided by lengthening contractions. These data indicate that lengthening contractions and fiber degeneration and/or regeneration are not required to induce protection from lengthening contraction-induced injury.  相似文献   

20.
江豚鼻道肌的解剖和构筑研究   总被引:1,自引:1,他引:1  
江豚的鼻部肌共分为后外肌、前外肌、后内肌、前内肌和深肌5层,无间肌和大小内肌较退化,无对角膜肌。通过测定各肌的肌重、平均肌纤维长、平均肌小节长以及肌纤维角度,计算了各肌的生理横截面积,估计最大强直张力和肌鲜重对估计最大强直张力之比值等指标。鼻部肌各肌的相对肌纤维长度相似。各鼻部肌的肌纤维角度均为零。前部肌比后部肌具有较大的收缩速度和收缩位移优势,后部肌则具有较强的张力产生能力。着于额隆和唇部吻肌的张力产生能力很强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号