首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified two inducible, gelatin-cleaving activities in the sea urchin extraembryonic matrix, the hyaline layer. Isolated hyaline layers, incubated in the presence of benzamidine, were devoid of gelatin-cleavage activities with apparent molecular mass less then 80k. However, when layers were incubated for 9-11 h in the absence of benzamidine, gelatin-cleavage activities, with apparent molecular mass 40- and 50k, were detected. Induction required the presence of NaCl and CaCl(2) at concentrations similar to those found in seawater and readdition of the reversible serine protease inhibitor benzamidine prevented induction. Both gelatin-cleaving activities were activated by calcium at a concentration similar to the calcium concentration found in seawater. Magnesium, also a major cationic species present in seawater, could not replace calcium as the activating ion. In addition, magnesium could not compete with calcium for binding to the gelatinases. Both cleavage activities showed substrate specificity and each failed to cleave bovine serum albumin, bovine hemoglobin or casein. Cleavage activity towards gelatin was inhibited by benzamidine and aminoethyl benzenesulfonyl fluoride, indicating that both activities belonged to the serine class of proteases. The induced 40-kDa activity displayed similar properties to those of a comigrating, gelatin-cleaving activity present in 69-h-old embryos.  相似文献   

2.
The hyaline layer (HL) is an apically located extracellular matrix (ECM) which surrounds the sea urchin embryo from the time of fertilization until metamorphosis occurs. While gelatin-cleavage activities were absent from freshly prepared hyaline layers, a dynamic pattern of activities developed in layers incubated at 15 or 37 degrees C in Millipore-filtered sea water (MFSW). Cleavage activities at 90, 55, 41, and 32 kDa were evident following incubation at either temperature. The activation pathway leading to the appearance of these species was examined to determine the minimum salt conditions required for processing and to establish precursor-product relationships. In both qualitative and quantitative assays, the purified 55 kDa gelatinase activity was inhibited by 1,10-phenanthroline (a zinc-specific chelator) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA). Calcium reconstituted the activity of the EGTA-inhibited enzyme with an apparent dissociation constant (calcium) of 1.2 mM. Developmental substrate gel analysis was performed using various stage embryos. The 55 and 32 kDa species comigrated with gelatin-cleavage activities present in sea urchin embryos. Collectively, the results reported here document a zymogen activation pathway which generates a 55 kDa, gelatin-cleaving activity within the extraembryonic HL. This species displayed characteristics of the matrix metalloproteinase class of ECM modifying enzymes.  相似文献   

3.
4.
This study demonstrates that a collagenous extracellular matrix (ECM) is necessary for gastrulation in the sea urchin embryo. The approach taken was to disrupt collagen processing with two types of agents (a lathyritic agent, beta-aminopropionitrile (BAPN), and three types of proline analogs: dehydroproline, cis-OH-proline, and azetidine carboxylic acid) and to assess the effect on embryogenesis by morphological, immunological, and biochemical criteria. Embryos chronically exposed to either of the agents following fertilization displayed no detectable developmental abnormalities before the mesenchyme blastula stage. These embryos, however, did not gastrulate nor differentiate any further and remained at the mesenchyme blastula stage for at least 36 hr. Upon removal of the agents, the embryos resumed a normal developmental schedule and formed pluteus larvae that were indistinguishable from control embryos. By immunofluorescence studies with monospecific antibodies to type I and type IV collagens it is seen that the lathyritic agent BAPN reduces the accumulation of collagens within the ECM. This effect is confirmed and quantitated by use of an ELISA and by a biochemical determination of OH-proline. When the agents are removed from the inhibited embryos, collagen deposition returns to normal, coincident with gastrulation. Western-blot analysis, using monospecific antibodies to collagen, demonstrates that the effect of the lathyritic agent is to reduce the stability of the extracellular collagen by inhibiting the intra- and intermolecular crosslinking of collagen molecules. BAPN exhibits a dose-dependent effect on morphogenesis, but has no effect on respiration nor on protein synthesis of the embryos throughout development. Although the lathyritic agent affects collagen deposition, it is shown to not affect the expression of other molecules of the ECM, nor that of several cell surface molecules. However, a cell surface molecule that is expressed specifically in the endoderm, termed Endo 1, is not expressed in the inhibited embryos. Endo 1 is expressed after removal of the lathyritic agent and its appearance is coincident with gastrulation in the recovered embryos. These results suggest that a collagenous ECM is important for gastrulation and subsequent differentiation in the sea urchin, but not for earlier developmental processes. In addition, the dependence of Endo 1 expression on the collagenous ECM raises the possibility that this cell surface molecule is in some way regulated by interactions of the presumptive endodermal cells with the ECM.  相似文献   

5.
Hyalin is a large (ca. 350 x 10(3) kD by gel electrophoresis) molecule that contributes to the hyalin layer surrounding the sea urchin embryo. In previous work a mAb (McA Tg-HYL), specific for hyalin, was found to inhibit cell-hyalin adhesion and block morphogenesis of whole embryos (Adelson, D. L., and T. D. Humphreys. 1988. Development. 104:391-402). In this report, hyalin ultrastructure was examined via rotary shadowing. Hyalin appeared to be a filamentous molecule approximately 75-nm long with a globular "head" about 12 nm in diameter that tended to form aggregates by associating head to head. Hyalin molecules tended to associate with a distinct high molecular weight globular particle ("core"). In fractions containing the core particle often more than one hyalin molecule were seen to be associated with the core. The core particle maintained a tenacious association with hyalin throughout purification procedures. The site(s) of McA Tg-HYL binding to the hyalin molecule were visualized by decorating purified hyalin with the antibody and then rotary shadowing the complex. In these experiments, McA Tg-HYL attached to the hyalin filament near the head region in a pattern suggesting that more than one antibody binding site exists on the hyalin filament. From the ultrastructural data and from the cell adhesion data presented earlier we conclude that hyalin is a filamentous molecule that binds to other hyalin molecules and contains multiple cell binding sites. Attempts were made to demonstrate the existence of lower molecular weight hyalin precursors. Whilst no such precursors could be identified by immunoprecipitation of in vivo labeled embryo lysates, immunoprecipitation of in vitro translation products suggested such precursors (ca 40 x 10(3) kD) might exist.  相似文献   

6.
Purification and characterization of the sea urchin embryo hatching enzyme   总被引:11,自引:0,他引:11  
The sea urchin hatching enzyme provides an interesting model for the control of gene expression during early development. In order to study its properties and developmental regulation, the hatching enzyme of the species Paracentrotus lividus has been purified. The fertilization envelopes of the embryos were digested before hatching by a crude culture supernatant previously made. The enzyme was then solubilized by 1 M NaCl and 0.5% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and purified by hydrophobic chromatography on Procion-agarose. A 470-fold increase in specific activity was obtained. The kinetic parameters of the proteolytic activity using dimethylcasein as substrate are: Km = 120 micrograms x ml-1, Vm = 200 mumol x min-1 x mg-1, and kcat = 180 s-1 at 500 mM NaCl, 10 mM CaCl2, pH 8.0, at 35 degrees C. The purified enzyme is highly active on fertilization envelopes: at 20 degrees C and 500 mM NaCl, 10 mM CaCl2, pH 8.0, 100 ng of enzyme completely denudes embryos in about 20 min under standard conditions. The molecular mass of the enzyme was estimated as 57 kDa by gel filtration, 51 kDa by gel electrophoresis, and 52 kDa by amino acid analysis. The hatching enzyme was shown to be a glycoprotein which autolyzes to a 30-kDa inactive form. Antibodies raised against the 51- or 30-kDa forms reacted with both these forms. Immunoblotting experiments showed that the hatching supernatants contain important amounts of the autolyzed species.  相似文献   

7.
Fine structural studies of fractured developing sea urchin embryos revealed the existence of a voluminous, fibrillar, extracellular matrix composed of fine filaments, twisting fibers and granules lining the blastocoel of midgastrula embryos. Glycine disaggregated embryos also exhibited this material. The fibrillar matrix is closely associated with the basal lamina of the ectodermal cells of the embryo and histochemical studies suggest it is composed mostly of sulfated glycosaminoglycans. The position of the matrix within the blastocoel as well as its organized association with embryonic cell surfaces is consistent with the hypothesis that it plays a major role in guiding the invaginating archenteron during gastrulation.  相似文献   

8.
9.
Summary A new embryonic extracellular matrix protein has been purified from eggs of the sea urchin Paracentrotus lividus. The molecule is a 210 kD dimer consisting of two 105 kD subunits that are held together by S-S bridges. In the unfertilized egg, the protein is found within granules uniformly distributed throughout the cytoplasm. After the egg is fertilized, the antigen is polarized to the apical surface of ectodermal and endodermal cells during all of the developmental stages examined, until the pluteus larva is formed. The protein promotes the adhesion of blastula cells to the substrate and is antigenically distinct from echinonectin, a well characterized substrate adhesion molecule. This report adds a new candidate to the list of known extracellular matrix molecules for the regulation of differentiation and morphogenesis in the sea urchin embryo. Offprint requests to: V. Matranga  相似文献   

10.
A monoclonal antibody, Sp12, binds to cortical granules, the hyaline layer, and skeletogenic, chromogenic, and blastocoelar mesenchyme of sea urchin eggs and embryos. Adult urchins also express Sp12 antigens in the dermal layer of the test and spines. Antigen is expressed on the surface of primary mesenchyme cells after they have entered the blastocoel, and by two secondary mesenchyme derivatives--the blastocoelar cells after they have been released from the tip of the archenteron, and the pigment cells in prism stage embryos. Immunogold localizations show antigen on the surfaces of mesenchyme, within membrane bounded vesicles, and associated with the Golgi apparatus. Western blots of antigens immunoprecipitated from seven developmental stages reveal twelve antigens ranging in Mr from 35 k to 240 k. Most of these antigens appear, disappear or change Mr over the first five days of development. Characterizations of this complex array of antigens show that the epitope recognized by Sp12 is eliminated by proteolytic enzymes and endoglycosidase F, while immunoreactivity is only reduced by periodate oxidation. As well, calcium magnesium free seawater extracts a subset of antigens different from that retained by crude membrane preparations. It is proposed that the mesenchyme of sea urchin embryos produces a family of developmentally regulated cell surface and extracellular matrix glycoproteins which all exhibit a carbohydrate epitope recognized by Sp12.  相似文献   

11.
Recent studies show that gastrulation in the sea urchin embryo involves movement of cells over the blastopore lip (involution). Some cells in the vegetal plate of the late blastula become bottle-shaped but they play a limited role in gastrulation. The functions of specific integrins, regulators of cell-cell adhesion, and extracellular matrix components in gastrulation are currently being analyzed. In addition, light-microscopic studies continue to provide a unique picture of dynamic cell behavior in vivo.  相似文献   

12.
Spicule matrix proteins are the products of primary mesenchyme cells, and are present in calcite spicules of the sea urchin embryo. To study their possible roles in skeletal morphogenesis, monoclonal antibodies against SM50, SM30 and another spicule matrix protein (29 kDa) were obtained. The distribution of these proteins in the embryo skeleton was observed by immunofluorescent staining. In addition, their distribution inside the spicules was examined by a 'spicule blot' procedure, direct immunoblotting of proteins embedded in crystallized spicules. Our observations showed that SM50 and 29 kDa proteins were enriched both outside and inside the triradiate spicules of the gastrulae, and also existed in the corresponding portions of growing spicules in later embryos and micromere cultures. The straight extensions of the triradiate spicules and thickened portions of body rods in pluteus spicules were also rich in these proteins. The SM30 protein was only faintly detected along the surface of spicules. By examination using the spicule blot procedure, however, SM30 was clearly detectable inside the body rods and postoral rods. These results indicate that SM50 and 29 kDa proteins are concentrated in radially growing portions of the spicules (normal to the c-axis of calcite), while SM30 protein is in the longitudinally growing portions (parallel to the c-axis). Such differential distribution suggests the involvement of these proteins in calcite growth during the formation of three-dimensionally branched spicules.  相似文献   

13.
After fertilization, sea urchin embryos surround themselves with an extracellular matrix, or hyaline layer, to which cells adhere during early development. Hyalin, the major protein component of the hyaline layer has been isolated and partially characterized in several laboratories. Although other proteins are present in the hyaline layer, little is known about their origin, distribution, or functions. The present report characterizes a set of hyaline layer proteins that are secreted after fertilization from a class of vesicles that are distinct from cortical granules. The group of proteins in these vesicles were identified by a monoclonal antibody (8d11) which recognizes a carbohydrate epitope common to each of these molecules. 8d11 polypeptides range in molecular weight from 105 to 225 kDa. Oogonia and oocytes in early stages of vitellogenesis do not express the antigen. The proteins are first observed by immunofluorescence during oogenesis as a peripheral band in mid-vitellogenic oocytes. Following germinal vesicle breakdown 8d11 moves to be distributed evenly throughout the cytoplasm. The proteins are transported to the egg surface by a cytochalasin-sensitive mechanism after fertilization, and secreted predominately within the first 30 min of development. 8d11 proteins are depleted in areas of cell contact during early embryogenesis, and become concentrated on the apical surface of ectoderm cells where they are assembled into high-molecular-weight aggregates. Three of the molecules in this group may be proteins previously described as "apical lamina" proteins. These observations provide evidence of a third pathway (cortical granules and basal lamina granules being the other two) for synthesis, storage, and exocytosis of matrix proteins that are release after fertilization.  相似文献   

14.
Skeletogenesis in the sea urchin embryo   总被引:2,自引:0,他引:2  
  相似文献   

15.
Hyaline layers, freshly prepared from one-hour-old embryos, were devoid of gelatin-cleavage activity. However, upon storage at 4 degrees C, gelatin-cleavage activities appeared; three species of apparent mol mass 94 --> 117-, 90-, and 45-kDa were seen. All three species required zinc for activity. Using gel-exclusion chromatography we separated the 94 --> 117-, and 90-kDa species from the 45-kDa activity. The two higher mol mass species were inhibited by ethylenebis (oxyethylenenitrilo) tetraacetic acid and the lost activity was restored by calcium. Reconstitution of activity occurred with an apparent dissociation constant (calcium) of 5 microM. The presence of millimolar concentrations of magnesium had a minimal inhibitory effect on activity. The thermal denaturation profile of the higher mol mass gelatin-cleavage activity was significantly different in the presence and absence of calcium. Stabilization of these activities against thermal denaturation at 60 degrees C occurred with an apparent dissociation constant (calcium) of 0.6 mM. Magnesium had no significant effect on the thermal denaturation profile. Collectively, these results suggest at least two different modes of interaction between calcium and the higher mol mass gelatinases. These conclusions are discussed in the context of the high calcium and magnesium concentrations present in the sea water environment of the sea urchin embryo.  相似文献   

16.
Fibronectin and laminin have been found in the extracellular matrix and in the basement membrane of sea urchin embryos during early development. These glycoproteins are also found on the cell surfaces of the outer epithelial layer and on the secondary mesenchyme cells within the blastocoel. The similarity of functions of the extracellular matrix and basement membrane is discussed, as is the similarity of their molecular components. These observations suggest the possibility that fibronectin and laminin form a continuous matrix surrounding the cells which links the outer ECM (hyaline layer) to the inner ECM (basement membrane). Such a network could coordinate the various activities of the embryo during early morphogenesis.  相似文献   

17.
Summary We have used polyclonal antisera raised against vertebrate tenascin to identify and localize tenascin-like proteins in the developing sea urchin. These antisera recognize high-molecular weight proteins on immunoblots of sea urchin embryo homogenates that are similar in size and appearance to tenascin from vertebrates. These proteins appear as a doublet with an apparent molecular weight of 150 kDa and a larger, broad band with an apparent molecular weight of 350 kDa. Whole mounts of sea urchin embryos and larvae were stained with one of these antisera. The anti-tenascin stained the surface of primary mesenchyme cells during their phase of active migration. This staining was sensitive to detergent, suggesting that the protein recognized by the antiserum was associated with the cell surface. During later stages of development, the bulk of the antitenascin staining was found dispersed throughout the blastocoel matrix, and was no longer sensitive to detergent. We conclude that sea urchins express tenascin-like proteins during early stages of development, and that these proteins may play a role associated with primary mesenchyme cell morphogenesis.  相似文献   

18.
Fibronectin in the developing sea urchin embryo   总被引:3,自引:1,他引:2       下载免费PDF全文
The presence of fibronectin in developing sea urchin embryos was studied uing immunofluorescence staining. The fluorescence pattern indicates that fibronectin is found on the cell surfaces and between cells in the blastula and gastrula stages, indicating that it plays a role in cell adhesion. Its presence on invaginating cells also suggests its involvement in morphogenesis during early development.  相似文献   

19.
Determination and morphogenesis in the sea urchin embryo   总被引:5,自引:0,他引:5  
The study of the sea urchin embryo has contributed importantly to our ideas about embryogenesis. This essay re-examines some issues where the concerns of classical experimental embryology and cell and molecular biology converge. The sea urchin egg has an inherent animal-vegetal polarity. An egg fragment that contains both animal and vegetal material will produce a fairly normal larva. However, it is not clear to what extent the oral-aboral axis is specified in embryos developing from meridional fragments. Newly available markers of the oral-aboral axis allow this issue to be settled. When equatorial halves, in which animal and vegetal hemispheres are separated, are allowed to develop, the animal half forms a ciliated hollow ball. The vegetal half, however, often forms a complete embryo. This result is not in accord with the double gradient model of animal and vegetal characteristics that has been used to interpret almost all defect, isolation and transplantation experiments using sea urchin embryos. The effects of agents used to animalize and vegetalize embryos are also due for re-examination. The classical animalizing agent, Zn2+, causes developmental arrest, not expression of animal characters. On the other hand, Li+, a vegetalizing agent, probably changes the determination of animal cells. The stability of these early determinative steps may be examined in dissociation-reaggregation experiments, but this technique has not been exploited extensively. The morphogenetic movements of primary mesenchyme are complex and involve a number of interactions. It is curious that primary mesenchyme is dispensable in skeleton formation since in embryos devoid of primary mesenchyme, the secondary mesenchyme cells will form skeletal elements. It is likely that during its differentiation the primary mesenchyme provides some of its own extracellular microenvironment in the form of collagen and proteoglycans. The detailed form of spicules made by primary mesenchyme is determined by cooperation between the epithelial body wall, the extracellular material and the inherent properties of primary mesenchyme cells. Gastrulation in sea urchins is a two-step process. The first invagination is a buckling, the mechanism of which is not understood. The secondary phase in which the archenteron elongates across the blastocoel is probably driven primarily by active cell repacking. The extracellular matrix is important for this repacking to occur, but the basis of the cellular-environmental interaction is not understood.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The sea urchin SpEGF 1 gene belongs to a growing family of developmentally important genes which encode proteins that contain repeated epidermal growth factor-like motifs. To characterize the embryonic expression of the protein products of this gene from Strongylocentrotus purpuratus, we generated polyclonal antisera from SpEGF I fusion proteins. These antibodies recognize two glycoproteins of 145 and 185 kDa, which we have named fibropellins. These proteins are present in unfertilized oocytes and throughout early development. The fibropellins are stored in cytoplasmic vesicles in the oocyte and are released soon after fertilization in a distinct secretory event following the exocytosis of cortical granule contents. Following secretion the proteins are localized in the basal surface of the hyaline layer. At the blastula stage the fibropellins become organized into distinct fibers which form a mesh-like network over the surface of the embryo. During subsequent development to the pluteus larva stage this network increases in overall morphological complexity and becomes regionally distinct. The molecular weights of the fibropellins and their pattern of embryonic localization indicate that these proteins form a component of the hyaline layer previously described as the apical lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号