首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52), a composition of chitinases, cooperates with endo-chitinase and exo-chitinase to disintegrate chitin into N-acetylglucosamine (NAG). NAGase from prawn (Penaeus vannamei) is involved in digestion and molting processes. The investigation of enzymatic properties, functional groups and catalytic mechanism is an essential mission to its commercial application. Bromacetic acid (BrAc) is a specific modifier for the histidine residue in specific condition. In this paper, the effect of BrAc on prawn NAGase activity for the hydrolysis of pNP-NAG has been investigated. The results showed that BrAc can reversibly and non-competitively inhibit the enzyme activity at appropriate concentrations and the value of IC(50) was estimated to be 17.05+/-0.65 mM. The inhibition kinetics of the enzyme by BrAc has been studied using the kinetic method of the substrate reaction. And the inhibition model was set up and the microscopic rate constants for the reaction of the inhibitor with free enzyme and the enzyme-substrate complexes were determined for inactivation and reactivation. The rate constant of the forward inactivation (k(+0)), which is 1.25 x 10(-3)s(-1), is about eight times as much as that of the reverse reactivation (k(-0)), which is 1.64 x 10(-4)s(-1). Therefore, when the BrAc concentration is sufficiently large, the enzyme is completely inactivated.  相似文献   

2.
背角无齿蚌碱性磷酸酶的功能基团研究   总被引:9,自引:0,他引:9  
在一定条件下分别采用PMSF、DTT、PCMB、NBS、TNBS、SUAN、BrAc及IBr等化学修饰剂选择修饰背角无齿蚌碱性磷酸酶的多种氨基酸残基,并测定其酶活力变化。结果表明,PMSF、NBS、TNBS、SUAN、DTT的修饰能显著抑制酶的活力,活力的降低与修饰剂的浓度相关。BrAc、IAc、PCMB的修饰不表现对酶的抑制作用。作者初步认为,Ser、Lys和Trp残基是背角无齿蚌碱性磷酸酶的必需功能基团,部分二硫键时保护酶的催化功能也是必需的。  相似文献   

3.
Alkaline phosphatase(AKP),from the succus entericus of silkworm,was purified using 10%-50% ammonium sulfate fractions,ion exchange chromatography Of DEAE-Sepharose,and size exclusion chromatography of Sephacryl S-200.The purification fold was 464 times and specified activity was 3936 U/mg.Optimum pH value of the phosphatase was 10.5,and was stable between pH 7.5 and 11.The optimum temperature of the phosphatase was 40℃ and it was unstable over 50℃.Km value of the phosphatase was 1.25 mmol/L.In a given condition,the phosphatase was selectively modified by PCMB,NBS,PMSE TNBS,SUAN,DTT,BrAc,and IAc,the results indicate that PMSF,SUA,BrAc,IAc,and TNBS could Obviously inhibit the activity of the phosphatase,and the degree of inhibition depended on the concentration of these reagents.There was little effect on the activity of phosphatase after treatment by PMSF,DTT,and NBT.We primarily conclude that mercapto and imidazole are essential for AKP from silkworm.Also,Lys residue and disulfide bands are necessary to protect the catalysis of the AKP.  相似文献   

4.
S Mobashery  E T Kaiser 《Biochemistry》1988,27(10):3691-3696
Two peptide-based affinity inactivators Ac-Leu-(BrAc)Orn-Arg-Ala-Ser-Leu-Gly (4) and Ac-Leu-Arg-(BrAc)Orn-Ala-Ser-Leu-Gly (5) were prepared as probes for the study of the nature of the active-site residues in the catalytic subunit of cyclic AMP dependent protein kinase. Under conditions of inhibitor in excess, both peptides inactivated the catalytic subunit by an apparent biphasic process. A fast phase, which inactivated the protein by approximately 40%, was followed by a slow phase that accounted for the loss of the remaining enzyme activity. Protection experiments with the kinase substrates showed that the slow phase of inactivation was active site directed, while the fast phase was not. Studies with radioactively labeled peptides 4 and 5 indicated incorporation of two peptide residues per molecule of the catalytic subunit upon complete inactivation. This observation is consistent with the occurrence of one alkylation event in each phase of the inactivation. The protein was proteolyzed subsequent to its modification with radioactive peptides. High-performance liquid chromatography afforded two radioactive peptide fragments in each case, which were sequenced by Edman degradation. Peptide 4 alkylated Thr-197 and Glu-346, while peptide 5 modified Cys-199 and also Glu-346. Data are presented to support the conclusion that Thr-197 and Cys-199 are located at or near the active site.  相似文献   

5.
The improvement in the characterization of slow-binding inhibitors achieved by performing experiments at elevated enzyme concentrations is presented. In particular, the characterization of slow-binding inhibitors conforming to a two-step mode of inhibition with a steady-state dissociation constant that is much lower than the initial dissociation constant with enzyme is discussed. For these systems, inhibition is rapid and low steady-state product concentrations are produced at saturating inhibitor concentrations. By working at elevated enzyme concentrations, improved signal-to-noise ratios are achieved and data may be collected at saturating inhibitor levels. Numerical simulations confirmed that improved parameter estimates are obtained and useful data to discern the mechanism of slow-binding inhibition are produced by working at elevated enzyme concentrations. The saturation kinetics that were unobservable in two previous studies of an enzyme inhibitor system were measured by performing experiments at an elevated enzyme concentration. These results indicate that consideration of the quality of the data acquired using a particular assay is an important factor when selecting the enzyme concentration at which to perform experiments used to characterize the class of enzyme inhibitors examined herein.  相似文献   

6.
A type C hexokinase (ATP:D-hexose-6-phosphotransferase EC 2.7.1.1) was partially purified from the liver of the frog Calyptocephalella caudiverbera. The enzyme is inhibited by glucose levels in the range of normal blood sugar concentrations. The extent of the inhibition by glucose depends on the concentration of ATP, being most marked between 1 and 5 mM ATP. Fructose, although a substrate, was not inhibitory of its own phosphorylation. The inhibitory effect of high glucose levels exhibited a strong, reversible pH dependence being most marked at pH 6.5. At pH 7.5 the inhibition by high glucose levels was a function of the enzyme concentration, the effect being stronger at high enzyme concentrations, whereas no inhibition was observed when assaying very diluted preparations. At all enzyme concentrations studied, high levels of glucose caused no inhibition at pH 8.5, whereas at pH 6.5 strong inhibition was always observed. Short times of photooxidation of hexokinase C as well as incubation with low concentrations of p-chloromercuribenzoate resulted in the loss of the inhibition by excess of glucose. Glucose-6-phosphate was found to be a strong inhibitor of hexokinase C but only at high glucose levels. The inhibitory effect of glucose-6-P follows sigmoidal kinetics at low (about 0.02 mM) glucose concentrations, the Hill coefficient being 2.3. The kinetics of the inhibition became hyperbolic at high (greater than 0.2 mM) glucose levels. These results suggest that the inhibition of hexokinase C by excess glucose is due to the interaction of glucose with a second, aldose-specific, regulatory site on the enzyme. The modification of the inhibitory effect by ATP, glucose-6-P, enzyme concentration, and pH, all of them at physiological levels, indicates a major role for hexokinase C in the regulation of glucose utilization by the liver.  相似文献   

7.
Treatment of rabbit hemopexin with bromoacetic acid (BrAc) or with diethylpyrocarbonate (DEP) modified histidine residues and produced a concomitant decrease in the protein's ability to form a low-spin hemichrome complex with deuteroheme (ferrideuteroporphyrin IX). Deuteroheme bound to hemopexin before treatment decreased the extent of inactivation by either reagent. After exposure of deuteroheme-hemopexin to 0.16 m BrAc at pH 6.9 for 120 h, 10–11 of the 16 histidine residues of hemopexin were carboxymethylated, but 90–95% of the deuteroheme-hemopexin complex remained intact. Under the same conditions, 12 histidine residues of apo-hemopexin were carboxymethylated, and 95% of the protein's ability to form its normal hemichrome complex with heme (ferriprotoporphyrin IX) was abolished. The alkylated apo-protein, however, did retain a potential to interact with deuteroheme. The apparent dissociation constants for the complexes of metal-free deuteroporphyrin and deuteroheme with BrAc-treated apo-hemopexin were both about 10?6m and nearly equal to that of the native deuteroporphyrin-hemopexin complex, as assessed by quenching of tryptophan fluorescence.Approximately 10 histidyl residues of the deuteroheme-hemopexin complex, but only about 4 residues of the apo-protein, were modified by DEP before heme-binding was appreciably affected. The effects of DEP on hemopexin were reversed by hydroxylamine at neutral pH, indicating that ethoxyformylation of histidine residues caused the observed inactivation of hemopexin. This and the results of BrAc treatment suggest that hemopexin contains several easily accessible histidine residues which are not critical for its interaction with heme.The conformation-sensitive positive ellipticity at 231 nm of hemopexin was affected by carboxymethylation and ethoxyformylation. Treatment with BrAc had only a small effect on the intrinsic ellipticity of apo-hemopexin, but eliminated the increase in ellipticity produced by interaction of unmodified hemopexin with heme. Treatment with DEP, on the other hand, decreased both intrinsic and extrinsic ellipticity.These results provide further evidence that the heme-hemopexin complex involves histidyl-heme iron coordination. In addition, they show that formation of the histidyl-heme complex not only greatly enhances the strength of the heme-hemopexin interaction but also is important for triggering conformational changes in the protein.  相似文献   

8.
The inhibition of guinea-pig heart (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) by calcium has been studied at pH 7.4, 6.8 and 6.4. 1. A decrease in pH reduced the threshold inhibitory concentration of calcium and the calcium concentration producing an inhibition of 50% of the enzyme activity. 2. Calcium reduced the apparent affinity of the enzyme of Na+, this effect occurred only at pH 7.4. 3. Calcium increased the apparent affinity of the enzyme for K+, this effect was enhanced at acidic pH. 4. Activation of the enzyme by Na+ for a constant Na+ : K+ ratio has been studied at pH 7.4 and at pH 6.8 in the absence and in the presence of 3.10(-4) M Ca 2+; the results of this experiment indicate that Ca2+ effect at pH 7.4 was not influenced by Na+ -- K+ competition and was probably due to a Na+ -- Ca2+ interaction. 5. At pH 7.4, the calcium inhibitory threshold concentration and the concentration producing 50% inhibition were reduced when Na+ was low; at pH 6.8, the calcium inhibition was not markedly modified by the change of Na+ concentration. 6. The Ca2+ -activated ATPase of myosin B which is related to the contractile behaviour of muscle and the Ca2+ -ATPase of the sarcoplasmic reticulum which is related to the ability of this structure to accumulate calcium were activated in a range of calcium concentration producing an inhibition of (Na2+ + K+) -ATPase. The present results indicate that the increase by acidity of the (Na2+ + K+) -ATPase sensitivity to calcium might be due to a suppression of a Na+ -Ca2+ interaction. On the basis of these observations, it is proposed that calcium might inhibit the Na+ -pump during the repolarization phase of the action potential and that, by this effect, it might control cell excitability.  相似文献   

9.
Acetic acid formation in Escherichia coli fermentation   总被引:2,自引:0,他引:2  
Theoretical analysis of cellulase product inhibition (by cellobiose and glucose) has been performed in terms of the mathematical model for enzymatic cellulose hydrolysis. The analysis showed that even in those cases when consideration of multienzyme cellulase system as one enzyme (cellulase) or two enzymes (cellulase and beta-glucosidase) is valid, double-reciprocal plots, usually used in a product inhibition study, may be nonlinear, and different inhibition patterns (noncompetitive, competitive, or mixed type) may be observed. Inhibition pattern depends on the cellulase binding constant, enzyme concentration, maximum adsorption of the enzyme (cellulose surface area accessible to the enzyme), the range in which substrate concentration is varied, and beta-glucosidase activity. A limitation of cellulase adsorption by cellulose surface area that may occur at high enzyme/substrate ratio is the main reason for nonlinearity of double-reciprocal plots. Also, the results of calculations showed that material balance by substrate, which is usually neglected by researchers studying cellulase product inhibition, must be taken into account in kinetic analysis even in those cases when the enzyme concentration is rather low. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
Tannic acid is a glucoside (penta-m-digallolyl-glucose), which exhibits a wide variety of physiological functions. Around neutral pH, 0.4 mM tannic acid produced 84% inhibition of rat brush border sucrase activity, but 35-40% enzyme inhibition was observed in the rabbit intestine at 0.08 mM concentration. In the mice, 74-77% enzyme inhibition was observed at 0.05 mM concentration of tannic acid. The observed inhibition was reversible in rat intestine. Tannic acid (0.2 mM) also inhibited lactase (18% in adult and 71% in suckling animals), maltase (76%) and trehalase (88%) activities in rat intestine. pH versus activity curves showed that 0.2 mM tannic acid inhibited enzyme activity in rat by 91% at pH 5.5 which was reduced to 14% at pH 8.5 compared to the respective controls. In the rabbit 18-60% enzyme inhibition was noticed below pH 7.0, however at pH 8.5, it was of the order of 38%. Kinetic analysis revealed that tannic acid is a competitive inhibitor of rat brush border sucrase at pH 6.8. Effect of tannic acid together with various -SH group reacting reagents revealed that the enzyme inhibition is additive in nature, suggesting the distinct nature of binding sites on the enzyme for these compounds. The results suggest that tannic acid is a potent inhibitor of intestinal brush border disaccharidases, and could modulate the intestinal functions.  相似文献   

11.
Mitochondrial and soluble Type I and Type II hexokinase from various rat tissues differed in their susceptibility to inhibition by glucose-1,6-bisphosphate (Glc-1,6-P2). In tissues where Type I is the predominant form, the mitochondrial enzyme was less susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at high Mg2+ concentration. In tissues where Type II is the predominant form, the mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at low Mg2+ concentration. The results suggest that changes in the intracellular concentrations of Glc-1,6-P2 and Mg2+ under various conditions would affect the activity of the bound and soluble hexokinase from different tissues in a different manner.  相似文献   

12.
1. The pH dependencies of the apparent Michaelis constant for oxidized glutathione and the apparent turnover number of yeast glutathione reductase (EC 1.6.4.2) have been determined at a fixed concentration of 0.1 mM NADPH in the range pH 4.5--8.0. Between pH 5.5 and 7.6, both of these parameters are relatively constant. The principal effect of low pH on the kinetics of the enzyme-catalyzed reaction is the observation of a pH-dependent substrate inhibition by oxidized glutathione at pH less than or equal 7, which is shown to correlate with the binding of oxidized glutathione to the oxidized form of the enzyme. 2. The catalytic activity of yeast glutathione reductase at pH 5.5 is affected by the sodium acetate buffer concentration. The stability of the oxidized and reduced forms of the enzyme at pH 5.5 and 25 degrees C in the absence of bovine serum albumin was studied as a function of sodium acetate concentration. The results show that activation of the catalytic activity of the enzyme at low sodium acetate concentration correlates with an effect of sodium acetate on a reduced form of the enzyme. In contrast, inhibition of the catalytic activity of the enzyme at high sodium acetate concentration correlates with an effect of sodium acetate on the oxidized form of the enzyme.  相似文献   

13.
Murine melanoma melanosomal tyrosinase, solubilised at pH 6.8 and 1% Igepal, exhibits a lag in cresolase activity which increases with increasing concentration of tyrosine. The enzyme, solubilised at pH 5.0 and assayed at pH 5.0, does not exhibit lag even at inhibitory concentrations of tyrosine while the same enzyme when assayed at pH 6.8 exhibits characteristic lag. When the enzyme was solubilised from a melanosomal fraction with detergent/water without any buffer, significant linear activity for 2 h was seen at an inhibitory concentration of tyrosine, indicating for the first time the presence of a form of tyrosinase without lag and inhibition by excess tyrosine. Exposure of the enzyme solubilised in buffer/detergent at pH 6.8 to rapid decrease in pH to 5.0 or 4.7 makes the enzyme remain irreversibly in the form without characteristic lag, even at an inhibitory concentration of tyrosine and at pH 6.8. These results may be interpreted as follows. The enzyme at pH 6.8 exists in the E form with an allosteric site for tyrosine. Decrease of the pH of the enzyme solution from 6.8 to 5.0 or 4.7 by dialysis results in the reversible protonation of the enzyme, which no longer binds tyrosine at its allosteric site and consequently inhibition by excess tyrosine and lag were not observed at acidic pH. However, if the enzyme was rapidly brought to pH 5.0 from 6.8 it remains irreversibly in the protonated form even at pH 6.8. Ascorbic acid acts as an effective reductant for the hydroxylation of tyrosine by tyrosinase, while 3,4-dihydroxyphenylalanine is both an effective reductant and counteracts the inhibition by tyrosine at pH 6.8.  相似文献   

14.
In the presence of organophosphorus inhibitors (OPI) AChE inhibition is initiated at a lower concentration of ACh; the plot reaction rate versus substrate concentration shows two maxima with a distinct minimum between them. It was shown that extremely mild conditions (short-term heating up to 50 degrees C; acidic or alkaline pH shift by 0.5 units; high concentrations of bivalent cations; erythrocyte storage) which do not affect substrate inhibition, remove this effect. The data obtained suggest that OPI effect is not directed to the site of AChE responsible for enzyme inhibition by ACh excess ("substrate inhibition site"), but to some other area. This results in a change in the conformation of the substrate inhibition site and a pronounced inhibition of the AChE activity takes place at lower substrate concentration.  相似文献   

15.
Palmityl-CoA inhibits free liver glycogen synthase; the concentration required for half-maximum inhibition is 3 to 4 micrometer. Almost complete inhibition was observed at 50 micrometer. Palmityl-CoA inhibition is associated with dissociation of the tetrameric enzyme into monomers, and binding of palmityl-CoA to the monomers. Glycogen-bound enzyme is also inhibited by palmityl-CoA, resulting in dissociation of the enzyme into monomers and concomitant release of the enzyme from the primer glycogen. Palmityl-CoA inhibition of the enzyme is partially reversed by the glycogen synthase activator, glucose-6-P, whereas sodium lauryl sulfate-inhibited enzyme is not reactivated by glucose-6-P. Sodium lauryl sulfate inhibition results in the dissociation of the tetramer into the monomers. Bovine serum albumin and cyclodextrin can prevent palmityl-CoA inhibition only when they are added prior to palmityl-CoA addition. The possible physiological role of palmityl-CoA in glucose homeostasis is discussed.  相似文献   

16.
This study was done to test the recent hypothesis (Boado et al. (1988) Biochem. Biophys. Res. Commun. 155, 1297-1304) that type I iodothyronine deiodinase (ID-I) is identical to protein disulfide isomerase (PDI). Autoradiograms of rat liver microsomal proteins, labeled with N-bromoacetyl-[125I]triiodothyronine (BrAc[125I]T3) and separated by SDS-PAGE, show predominantly 2 radioactive bands of Mr 27 and 56 kDa. Substrates and inhibitors of ID-I inhibited labeling of the 27 kDa band but not that of the 56 kDa band. Treatment of microsomes with trypsin abolished labeling of the 27 kDa protein and destroyed the activity of ID-I but did not prevent labeling of the 56 kDa protein. Following treatment of microsomes at pH 8.0-9.5 or with 0.05% deoxycholate (DOC) PDI content and labeling of the 56 kDa protein were strongly diminished but ID-I activity and labeling of the 27 kDa protein were not affected. The latter decreased in parallel after treatment at pH greater than or equal to 10. Rat pancreas microsomes contain high amounts of PDI but show no ID-I activity. Reaction of these microsomes with BrAc[125I]T3 results in extensive labeling of a 56 kDa protein but no labeling of a 27 kDa protein. Pure PDI (Mr 56 kDa) was readily labeled by BrAc[125I]T3 but showed no deiodinase activity. These results strongly suggest that the 27 kDa band represents (a subunit of) ID-I while the 56 kDa band represents PDI. From these and other data it is concluded that PDI and ID-I are not identical proteins.  相似文献   

17.
Native liver glycine N-methyltransferase (GNMT) is N-acetylated while the recombinant enzyme is not. We show here that acetylation of the N-terminal valine affects several kinetic parameters of the enzyme. Glycine N-methyltransferase is a regulatory enzyme mediating the availability of methyl groups by virtue of being inhibited by folate. N-acetylation does not affect the overall structure of the protein and does not affect basal enzyme activity of GNMT. Binding of both the mono- and pentaglutamate forms of 5-methyltetrahydrofolate is the same for the acetylated and non-acetylated forms of the enzyme, however the pentaglutamate form is bound more tightly than the monoglutamate form in both cases. Although binding of the folates is similar for the acetylated and non-acetylated forms of the enzyme, inhibition of enzyme activity differs significantly. The native, N-acetylated form of the enzyme shows 50% inhibition at 1.3 microM concentration of the pentaglutamate while the recombinant non-acetylated form shows 50% inhibition at 590 microM. In addition, the binding of folate results in cooperativity of the substrate S-adenosylmethionine (AdoMet), with a Hill coefficient of 1.5 for 5-methyltetrahydrofolate pentaglutamate.  相似文献   

18.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   

19.
Cytoplasmic malate dehydrogenase from ovine liver Echinococcus granulosus protoscolices was purified 22-fold by QAE- and SP-Sephadex chromatography. The pH optimum of the enzyme was 8.0 in either Tris-HCl or barbital buffer. The κm values of oxaloacetate and NADH were 0.400 ± 0.018 and 0.410 ± 0.038 mM, respectively. The enzyme lost about 90% of its activity when heated for 2 min at 65°C. A 61.4% inhibition of the enzyme was noted at 4 mM concentration of diethyl pyrocarbonate. A 3 mM concentration of fructose 1,6-diphosphate inhibited the enzyme by 76.5%. The inhibition was non-competitive with respect to NADH with a κi value of 0.85 mM. A 75% inhibition of the enzyme was noted at 1 mM concentration of mebendazole that inhibited the enzyme upon competing with NADH with a κi value of 0.176 mM. A 2-mM concentration of citrate almost doubled the enzyme activity. The enzyme was inhibited at high concentrations of either substrate. The enzyme was not inhibited by p-hydroxymercuribenzoate or fumarate. The enzyme was absolutely specific for NADH as a cofactor. The properties of this enzyme are compared with those of the enzyme from the host liver, the cyst fluid and some other animal sources. The results are discussed in terms of the differences among the properties of the host liver, the cyst fluid and the protoscolices enzymes. The biochemical basis for the use of mebendazole in the treatment of echinococcosis is also elucidated.  相似文献   

20.
A graphical method for analyzing enzyme data to obtain kinetic parameters, and to identify the types of inhibition and the enzyme mechanisms, is described. The method consists of plotting experimental data as nu/(V0 - nu) vs 1/(I) at different substrate concentrations. I is the inhibitor concentration; V0 and nu are the rates of enzyme reaction attained by the system in the presence of a fixed amount of substrate, and in the absence and presence of inhibitor, respectively. Complete inhibition gives straight lines that go through the origin; partial inhibition gives straight lines that converge on the 1-I axis, at a point away from the origin. For competitive inhibition, the slopes of the lines increase with increasing-substrate concentration; with noncompetitive inhibition, the slopes are independent of substrate concentration; with uncompetitive inhibition, the slopes of the lines decrease with increasing substrate concentrations. The kinetic parameters, Km, Ki, Ki', and beta (degree of partiality) can best be determined from respective secondary plots of slope and intercept vs substrate concentration, for competitive and noncompetitive inhibition mechanism or slope and intercept vs reciprocal substrate concentration for uncompetitive inhibition mechanism. Functional consequencs of these analyses are represented in terms of specific enzyme-inhibitor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号