首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Yue Jiang  Feng Chen   《Process Biochemistry》2000,35(10):1205-1209
The effects of medium glucose concentration and pH on growth and docosahexaenoic acid (DHA, C22:6 ω-3) content of Crypthecodinium cohnii were investigated. Over a range of glucose concentrations (5–40 g l−1) investigated, the highest specific growth rate (0.12 h−1), highest cell dry weight concentration (3.13 g l−1) and highest growth yield on glucose (0.6 g g−1) were obtained at 20 g l−1 glucose. However, the highest degree of fatty acid unsaturation (3.2) and highest DHA proportion (53.4% of total fatty acids) were achieved at 5 g l−1 glucose. Low glucose concentrations enhanced the degree of fatty acid unsaturation and DHA formation. Medium pH also affected cell growth, fatty acid unsaturation and DHA proportion. When medium pH was 7.2, the highest specific growth rate (0.089 h−1), highest cell dry weight concentration (2.73 g l−1), highest growth yield on glucose (0.564 g g−1), highest degree of fatty acid unsaturation (3.4) and highest DHA proportion (56.8% of total fatty acids) were obtained. Results suggest that glucose concentration and pH value could be effectively manipulated to achieve maximum DHA production by C. cohnii.  相似文献   

2.
The effect of dilution rate on the production of lactic acid from whey permeate by Lactobacillus helveticus has been investigated. In the first chemostat of a two-stage system, total conversion (98.1%) and maximum lactic acid concentration (43.7 g l−1) were obtained at a dilution rate (DItot) of 0.06 h−1. Maximum volumetric productivities of lactic acid (8.27 g l−1 h−1) and biomass (1.90 g l−1 h−1) occurred at DItot of 0.40 h−1. The fraction of -lactate in the product was found to increase with dilution rate and reached a maximum of 66% at the same dilution rate. The maximum specific growth ratemax) on this medium was 0.7 h−1. A YATP (max) value of 22.4 g dry weight (mol ATP)−1 and a maintenance coefficient of 8.0 mmol ATP (g dry weight h)−1 were determined. The second stage, in series with the first, confirmed these results and further showed that the total residence time could be reduced by 50%, compared with a single chemostat for the same nearly complete level of substrate conversion.  相似文献   

3.
Autotrophic microalgae cultures have been proposed as an alternative source of EPA, a nutritionally important polyunsaturated fatty acid that plays a key role in the prevention and treatment of several human diseases and disorders. The technology currently available is however, considered commercially not viable because of the low degree of control of algae cultures in outdoor open ponds. The use of closed reactors could overcome these limitations and bring EPA production by microalgae closer to becoming a reality. In this study, we have demonstrated the feasibility of outdoor cultivation of Nannochloropsis sp. in tubular reactors and the potential of this eustigmatophyte as an alternative source of EPA. Nannochloropsis sp. was cultivated in NHTRs of different sizes (from 10.2 to 610 l) from spring to autumn under the climatic conditions of central Italy. EPA productivity essentially reflected the productivity of the culture and reached its maximum in May–June (mean monthly value: 32 mg l−1 day−1). Although the fatty acid composition of the biomass varied significantly during the cultivation period, EPA content remained rather stable around the value of 4% of dry biomass. The transfer of the cultures from laboratory to outdoor conditions, the exposure to natural light–dark cycles, along with lowering the salt concentration from 33 g l−1 (seawater salinity value) to 20 g l−1, factors that caused lasting modifications in the fatty acid content and composition of Nannochloropsis sp., did not significantly affect the EPA content of the biomass.  相似文献   

4.
The fungus Mortierella alpina LPM 301, a producer of arachidonic acid (ARA), was found to possess a unique property of a growth-coupled lipid synthesis. An increase in specific growth rate (μ) from 0.03 to 0.05 h−1 resulted in a two-fold increase in the specific rate of lipid synthesis (milligram lipid (gram per lipid-free biomass) per hour). Under batch cultivation in glucose-containing media with urea or potassium nitrate as nitrogen sources, the ARA content was 46.0 and 60.4% of lipid; 16.4 and 18.8% of dry biomass; and 4.2 and 4.5 g l−1, respectively. Under continuous cultivation of the strain, the productivity of ARA synthesis was 16.2 and 19.2 mg l−1 h−1 at μ=0.05 and 0.03 h−1, respectively.  相似文献   

5.
The advantages of nanofiltration membranes coupled with a CSTR were demonstrated for the semicontinuous production of lactic acid from whey permeate. Lactic acid was removed from the growth medium while lactose was kept in the bioreactor with the bacterial cells; moreover, Mg2+ ions were also recycled in the bioreactor at 96% and the nanofiltrate color was greatly reduced. The highest volumetric productivity achieved with this device was 7.1 g l−1 h−1 and the lactate concentration was 55 g l−1. The specific productivity was 3.54 h−1. More than 99% of the membrane fouling after 44 h of fermentation was reversible. The initial permeate flux was restored easily by a water rinse. The performance of this type of membrane bioreactor was discussed.  相似文献   

6.
Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E were carried out in a complex medium containing a NaOH-treated wood hydrolysate for the production of succinic acid. The wood hydrolysate based medium was treated with NaOH before sterilization to reduce the formation of inhibitory compounds. M. succiniciproducens MBEL55E utilized xylose as well as glucose in the wood hydrolysate based medium as a carbon source for the succinic acid production. In batch cultures, the final succinic acid concentration of 11.73 g l−1 was obtained from the pre-treated wood hydrolysate based medium, resulting in a succinic acid yield of 56% and a succinic acid productivity of 1.17 g l−1 h−1, while the corresponding continuous cultures gave the succinic acid yield and productivity of 55% and 3.19 g l−1 h−1, respectively. These results suggest that succinic acid can be produced economically and efficiently by the fermentation of M. succiniciproducens MBEL55E from an inexpensive biomass-based wood hydrolysate.  相似文献   

7.
The heterotrophic micro alga Crypthecodinium cohnii was cultivated in media containing glucose, yeast extract and sea salt. Increasing amounts of yeast extract stimulated growth but influenced lipid accumulation negatively. Sea salt concentrations above half the average seawater salinity were required for good growth and lipid accumulation. C. cohnii was able to grow on a glucose concentration as high as 84.3 g l−1, although concentrations above 25 g l−1 decreased the growth rate. Comparison of growth at 27 and 30°C showed that the higher incubation temperature was more favourable for growth. However, lipid accumulation was higher at the lower incubation temperature. In a bioreactor the biomass concentration increased from 1.5 to 27.7 g l−1 in 74 h. In the final 41 h of the process the lipid content of the biomass increased from 7.5 to 13.5%. In this period the percentage of docosahexaenoic acid of the lipid increased from 36.5 to 43.6%. The total amounts of lipid and docosahexaenoic acid after 91 h were 3.7 and 1.6 g l−1, respectively.  相似文献   

8.
When cultivated in Murashige & Skoog medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxy acetic acid and 0.5 mg l−1 6-benzyladenine, Perilla frutescens cells in suspension culture grew rapidly reaching about 13.6 g dry wt l−1 after 12 days. The cell line produced both anthocyanin 0.9 g l−1 and triterpenoids: 16 mg l−1 oleanolic acid (OA), 25 mg l−1 ursolic acid (UA) and 14 mg l−1 tormentic acid (TA). When P. frutescens cells of 7-day-old cultures were exposed to a yeast elicitor at 0.5–5% (v/v) for 7 days, it was found that anthocyanin content peaked at 10.2% of dry weight with yeast elicitor at 1% (v/v) whereas the maximum production of oleanolic acid and ursolic acid in cultures treated with 2% (v/v) yeast elicitor was 19 and 27 mg l−1, a 46 and 24% increase over the control, respectively. This is the first report of simultaneous production of both anthocyanin and triterpenoids in a single culture system.  相似文献   

9.
A fed-batch process was developed for high cell density culture of the diatom Nitzschia laevis for enhanced production of eicosapentaenoic acid (EPA). Firstly, among the various medium components, glucose (Glu) was identified as the limiting substrate while nitrate (NO3), tryptone (Tr) and yeast extract (Ye) were found to promote cell growth by enhancing specific growth rate. Therefore, these components were considered essential and were included in the feed medium for subsequent fed-batch cultivation. With the optimized ratio of NO3:Tr:Ye being 1:2.6:1.3 (by weight), the relative proportions of glucose to the nitrogen sources in the feed were investigated. The optimal ratios of Glu:NO3 for specific growth rate and EPA productivity were both determined to be 32:1 (by weight). Finally, based on the residual glucose concentration in the culture, a continuous medium feeding strategy for fed-batch fermenter cultivation was developed, with which, the maximal cell dry weight and EPA yield obtained were 22.1 g l−1 and 695 mg l−1, respectively, which were great improvements over those of batch cultures.  相似文献   

10.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

11.
High-density cultivation of Perilla frutescens cells for anthocyanin production was carried out in both batch and fed-batch modes in a 500-ml shake flask. In fed-batch cultures, a high cell density of 27.7 g dry cells l−1 and a total anthocyanin production of 3.87 g l−1 by intermittent feeding of all medium components except hormones were obtained. In batch cultures, both initial sucrose concentration and inoculum size showed a conspicuous effect on the kinetics of cell growth, sugar consumption, and secondary metabolite (anthocyanins) production by suspended P. frutescens cells. At an inoculum size of 50 g wet cells l−1, the maximum cell density of 38.3 g dry cells l−1 was obtained after 11 days of cultivation at an initial sucrose concentration of 60 g l−1, the highest pigment production of>5.8 g l−1 was attained after 10 days of cultivation at an initial sucrose concentration of 45 g l−1. These amounts of cell mass and anthocyanin pigments were 3.3 and 24 times higher than those at an initial sucrose concentration of 15 g l−1 and inoculum size of 15 g wet cells l−1, respectively.  相似文献   

12.
Effect of iron concentration on hydrogen fermentation   总被引:11,自引:0,他引:11  
The effect of the iron concentration in the external environment on hydrogen production was studied using sucrose solution and the mixed microorganisms from a soybean-meal silo. The iron concentration ranged from 0 to 4000 mgFeCl2 l−1. The temperature was maintained at 37°C. The maximum specific hydrogen production rate was found to be 24.0 mlg−1 VSSh−1 at 4000 mgFeCl2 l−1. The specific production rate of butyrate increased with increasing iron concentration from 0 to 20 mgFeCl2 l−1, and decreased with increasing iron concentration from 20 to 4000 mgFeCl2 l−1. The maximum specific production rates of ethanol (682 mgg−1 VSSh−1) and butanol (47.0 mgg−1 VSSh−1) were obtained at iron concentrations of 5 and 3 mgFeCl2 l−1, respectively. The maximum hydrogen production yield of 131.9 mlg−1 sucrose was obtained at the iron concentration of 800 mgFeCl2 l−1. The maximum yields of acetate (389.3 mgg−1 sucrose), propionate (37.8 mgg−1 sucrose), and butyrate (196.5 mg g−1 sucros) were obtained at iron concentrations of 3, 200 and 200 mgFeCl2 l−1, respectively. The sucrose degradation efficiencies were close to 1.0 when iron concentrations were between 200 and 800 mgFeCl2 l−1. The maximum biomass production yield was 0.283 gVSSg−1 sucrose at an iron concentration of 3000 mgFeCl2 l−1.  相似文献   

13.
Enzymic synthesis of fructose esters was studied under reduced pressure. Different acyl donors were tested, and immobilized Candida antarctica lipase was used as biocatalyst. Influences of pressure, nature of the acyl donor, molar ratio sugar/acyl donor were investigated. Pressure had the greatest influence. At 200 mbar, more than 90% of fructose was acylated compared to 50% under atmospheric pressure. This is explained by the evaporation of reaction by-product (methanol or water) that shifted the equilibrium. C. antarctica lipase catalyzed sugar ester synthesis very efficiently using rapeseed oil as acyl donor. Moreover, synthesis performed with an equimolar mixture of both substrates gave promising results. Although the reaction rate was slower than synthesis performed with an excess of fatty acid, fructose monooleate concentration was still high (44 g l−1 instead of 56 g l−1) and the residual acyl donor concentration was very low. Downstream processes for the recovery of pure fructose monooleate were simplified in this case.  相似文献   

14.
The growth of the Spodoptera frugiperda cell line Sf9 was studied in batch and continuous culture. The results of batch cultivations showed that glucose was the preferred energy and carbon source limiting the cell density in both TNM-FH and IPL-41 media. Continuous culture using IPL-41-based feeding medium with different glucose (2.5, 5 and 10 g l−1) and yeast extract concentrations (4, 8 and 16 g l−1) showed that in serum-supplemented medium the maximum cell density was limited by glucose and yeast extract concentration. The transition to glucose limitation caused a decrease in growth rate and viability. A high cell density culture (18 × 106 ml−1) was obtained using a glucose concentration of 10 g l−1 and a yeast extract concentration of 8 g l−1 in the feeding medium. A yeast extract concentration of 16 g l−1 inhibited growth. Unlike mammalian cell cultures, lactate, alanine and ammonia were not involved in growth inhibition. Lactate did not accumulate under aerobic conditions. Ammonia accumulation, if observed, was insignificant. The level of alanine synthesized and excreted into the culture medium never reached an inhibitory level. During glucose limitation alanine did not accumulate and ammonia was released. However, even in the presence of glucose significant amounts of Asp, Glu, Gln, Asn, Ser, Arg and Met were utilized for energy production. The amino groups of these amino acids were transferred to pyruvate or used for nucleic acid synthesis and excreted in the form of alanine into the culture medium. The consumption of His, Lys, Thr, Gly, Val, Leu, Phe, Tyr, Trp and Ile by growing Sf-9 cells was almost equal to their concentration in the biomass.  相似文献   

15.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

16.
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l−1 glucose. An average ethanol concentration of 124.6 g l−1 or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h−1. The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.  相似文献   

17.
Dry biomass of Spirulina platensis re-hydrated for 48 h was employed as a biosorbent in tests of cadmium(II) removal from water. Various concentrations of biomass (from 1 to 4 g l−1) and metal (from 100 to 800 mg l−1) were tested. Low biomass levels (Xo  2 g l−1) ensured metal removal up to 98% only at Cd0= 100 and 200 mg l−1, while Xo  2.0 g l−1 were needed at Cd0 = 400 mg l−1 to achieve satisfactory results. Whereas Xo = 4.0 g l−1 was effective to remove up to Cd0 = 500 mg l−1, a further increase in metal concentration (Cd0 = 600 and 800 mg l−1) led to progressive worsening of the system performance. At a given biomass levels, the kinetics of the process was better at low Cd2+ concentrations, while, raising the adsorbent level from 1.0 to 2.0 g l−1 and then to 4.0 g l−1, the rate constant of biosorption increased by about one order of magnitude in both cases and the adsorption capacity of the system progressively decreased from 357 to 149 mg g−1.  相似文献   

18.
Marine microbes have the potential for accumulating large quantities of lipids and are therefore suitable candidate as feedstock in unsaturated fatty acid production. The efficient utilisation of glycerol as an alternative carbon source to glucose was demonstrated in the fermentation of newly isolated thraustochytrid strains from the Queenscliff, Victoria, Australia. The isolates exhibited the presence of omega-3 and omega-6 polyunsaturated fatty acids, with the major fatty acids for all isolates being (as percent total fatty acid), palmitic acid (25.1–40.78%), stearic acid (4.24–13.2%), eicosapentaenoic acid EPA (2.31–8.5%) and docosapentaenoic acid (7.24–10.9%). Glycerol as a carbon source gave promising biomass growth with significant lipid and DHA productivity. An approximate three-fold increase in carotenoid content in all isolates was achieved when glycerol was used as a carbon source in the production medium.  相似文献   

19.
A bacterial flavin-containing monooxygenase (FMO) gene was cloned from Methylophaga aminisulfidivorans MPT, and a plasmid pBlue 2.0 was constructed to express the bacterial fmo gene in E. coli. To increase the production of bio-indigo, upstream sequence size of fmo gene was optimized and response surface methodology was used. The pBlue 1.7 plasmid (1686 bp) was prepared by the deletion of upstream sequence of pBlue 2.0. The recombinant E. coli harboring the pBlue 1.7 plasmid produced 662 mg l−1 of bio-indigo in tryptophan medium after 24 h of cultivation in flask. The production of bio-indigo was optimized using a response surface methodology with a 2n central composite design. The optimal combination of media constituents for the maximum production of bio-indigo was determined as tryptophan 2.4 g l−1, yeast extract 4.5 g l−1 and sodium chloride 11.4 g l−1. In addition, the optimum culture temperature and pH were 30 °C and pH 7.0, respectively. Under the optimized conditions mentioned above, the recombinant E. coli harboring pBlue 1.7 plasmid produced 920 mg of bio-indigo per liter in optimum tryptophan medium after 24 h of cultivation in fermentor. The combination of truncated insert sizes and culture optimization resulted in a 575% increase in the production of bio-indigo.  相似文献   

20.
A reliable and reproducible method for plant regeneration in vitro of two important temperate eucalypts, Eucalyptus nitens and E. globulus, has been developed which utilises seedling explants. Highly regenerative callus was obtained from individual cotyledon and hypocotyledon explants of both species following cultivation on Murashige and Skoog’s (MS) basal nutrient medium supplemented with 30 g l−1 sucrose, 5–10% (v/v) coconut water, 0.8% agar, 1 mg l−1 -naphthalene-acetic acid (NAA) and 0.5 mg l−1 N6 benzylaminopurine (BAP). Shoot differentiation was observed 7–8 weeks after transfer of callus onto regeneration medium containing 0.5 mg l−1 NAA and 1 mg l−1 BAP. In a few instances, direct shoot regeneration occurred without an intervening callus phase in both species. The frequency of plant regeneration was higher for callus derived from hypocotyl segments (30–35%) compared to cotyledonary explants (20–25%) though the average number of shoots per cotyledonary explant was generally higher than for hypocotyl explants. Somatic embryos were observed occasionally in E. nitens, arising from the surface of organogenic callus. Organised structures closely resembling somatic embryos were also observed in E. globulus. Regenerated shoots (30–40%) of both species could be rooted in modified MS media containing indole-3-butyric acid (IBA) and plantlets were successfully transferred to soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号