首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Folding intermediates have been detected and characterized for many proteins. However, their structures at atomic resolution have only been determined for two small single domain proteins: Rd-apocytochrome b(562) and engrailed homeo domain. T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. An early native-state hydrogen exchange experiment identified an intermediate with the C-terminal domain folded and the N-terminal domain unfolded. We have used a native-state hydrogen exchange-directed protein engineering approach to populate this intermediate and demonstrated that it is on the folding pathway and exists after the rate-limiting step. Here, we determined its high-resolution structure and the backbone dynamics by multi-dimensional NMR methods. We also characterized the folding behavior of the intermediate using stopped-flow fluorescence, protein engineering, and native-state hydrogen exchange. Unlike the folding intermediates of the two single-domain proteins, which have many non-native side-chain interactions, the structure of the hidden folding intermediate of T4 lysozyme is largely native-like. It folds like many small single domain proteins. These results have implications for understanding the folding mechanism and evolution of multi-domain proteins.  相似文献   

2.
Chu RA  Takei J  Barchi JJ  Bai Y 《Biochemistry》1999,38(43):14119-14124
The previous native-state hydrogen exchange experiment with barnase failed to detect any partially unfolded intermediate state which was contrary to the experimental results from kinetic deuterium hydrogen exchange pulse labeling and protein engineering studies. This has been taken to suggest that the native-state hydrogen exchange method cannot be used alone as an analytical tool to study the folding pathways of proteins. Here, we revisited the pulse labeling experiment with barnase and detected no stable folding intermediate. This finding allows a reconciliation of the native-state HX data and the folding pathway of barnase. Along with alternative theoretical interpretations for a curved chevron plot of protein folding, these data suggest that further investigation of the nature of the intermediate of barnase is needed.  相似文献   

3.
Intermediates along a protein's folding pathway can play an important role in its biology. Previous kinetics studies have revealed an early folding intermediate for T4 lysozyme, a small, well-characterized protein composed of an N-terminal and a C-terminal subdomain. Pulse-labeling hydrogen exchange studies suggest that residues from both subdomains contribute to the structure of this intermediate. On the other hand, equilibrium native state hydrogen experiments have revealed a high-energy, partially unfolded form of the protein that has an unstructured N-terminal subdomain and a structured C-terminal subdomain. To resolve this discrepancy between kinetics and equilibrium data, we performed detailed kinetics analyses of the folding and unfolding pathways of T4 lysozyme, as well as several point mutants and large-scale variants. The data support the argument for the presence of two distinct intermediates, one present on each side of the rate-limiting transition state barrier. The effects of circular permutation and site-specific mutations in the wild-type and circular permutant background, as well as a fragment containing just the C-terminal subdomain, support a model for the unfolding intermediate with an unfolded N-terminal and a folded C-terminal subdomain. Our results suggest that the partially unfolded form identified by native state hydrogen exchange resides on the folded side of the rate-limiting transition state and is, therefore, under most conditions, a "hidden" intermediate.  相似文献   

4.
Small proteins often fold in an apparent two-state manner with the absence of detectable early-folding intermediates. Recently, using native-state hydrogen exchange, intermediates that exist after the rate-limiting transition state have been identified for several proteins. However, little is known about the folding kinetics from these post-transition intermediates to their corresponding native states. Herein, we have used protein engineering and a laser-induced temperature-jump (T-jump) technique to investigate this issue and have applied it to Rd-apocyt b(562) , a four-helix bundle protein. Previously, it has been shown that Rd-apocyt b(562) folds via an on-pathway hidden intermediate, which has only the N-terminal helix unfolded. In the present study, a double mutation (V16G/I17A) in the N-terminal helix of Rd-apocyt b(562) was made to further increase the relative population of this intermediate state at high temperature by selectively destabilizing the native state. In the circular dichroism thermal melting experiment, this mutant showed apparent two-state folding behavior. However, in the T-jump experiment, two kinetic phases were observed. Therefore, these results are in agreement with the idea that a folding intermediate is populated on the folding pathway of Rd-apocyt b(562) . Moreover, it was found that the exponential growth rate of the native state from this intermediate state is roughly (25 microsec)(-1) at 65 degrees C.  相似文献   

5.
Zhou Z  Feng H  Bai Y 《Proteins》2006,65(2):259-265
The focal adhesion target (FAT) domain of focal adhesion kinase has a four-helix bundle structure. Based on a hydrogen exchange-constrained computer simulation study and some indirect experimental results, it has been suggested that a partially unfolded state of the FAT domain with the N-terminal helix unfolded plays an important role in its biological function. Here, using a native-state hydrogen exchange method, we directly detected an intermediate with the N-terminal helix unfolded in a mutant (Y925E) of the FAT domain. In addition, kinetic folding studies on the FAT domain suggest that this intermediate exists on the native side of the rate-limiting transition state for folding. These results provide more direct evidence of the existence of the proposed intermediate and help to understand the folding mechanism of small single domain proteins.  相似文献   

6.
Vu ND  Feng H  Bai Y 《Biochemistry》2004,43(12):3346-3356
The nature of the rate-limiting transition state at zero denaturant (TS(1)) and whether there are hidden intermediates are the two major unsolved problems in defining the folding pathway of barnase. In earlier studies, it was shown that TS(1) has small phi values throughout the structure of the protein, suggesting that the transition state has either a defined partially folded secondary structure with all side chains significantly exposed or numerous different partially unfolded structures with similar stability. To distinguish the two possibilities, we studied the effect of Gly mutations on the folding rate of barnase to investigate the secondary structure formation in the transition state. Two mutations in the same region of a beta-strand decreased the folding rate by 20- and 50-fold, respectively, suggesting that the secondary structures in this region are dominantly formed in the rate-limiting transition state. We also performed native-state hydrogen exchange experiments on barnase at pD 5.0 and 25 degrees C and identified a partially unfolded state. The structure of the intermediate was investigated using protein engineering and NMR. The results suggest that the intermediate has an omega loop unfolded. This intermediate is more folded than the rate-limiting transition state previously characterized at high denaturant concentrations (TS(2)). Therefore, it exists after TS(2) in folding. Consistent with this conclusion, the intermediate folds with the same rate and denaturant dependence as the wild-type protein, but unfolds faster with less dependence on the denaturant concentration. These and other results in the literature suggest that barnase folds through partially unfolded intermediates that exist after the rate-limiting step. Such folding behavior is similar to those of cytochrome c and Rd-apocyt b(562). Together, we suggest that other small apparently two-state proteins may also fold through hidden intermediates.  相似文献   

7.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

8.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles.  相似文献   

9.
Feng H  Takei J  Lipsitz R  Tjandra N  Bai Y 《Biochemistry》2003,42(43):12461-12465
Structures of intermediates and transition states in protein folding are usually characterized by amide hydrogen exchange and protein engineering methods and interpreted on the basis of the assumption that they have native-like conformations. We were able to stabilize and determine the high-resolution structure of a partially unfolded intermediate that exists after the rate-limiting step of a four-helix bundle protein, Rd-apocyt b(562), by multidimensional NMR methods. The intermediate has partial native-like secondary structure and backbone topology, consistent with our earlier native state hydrogen exchange results. However, non-native hydrophobic interactions exist throughout the structure. These and other results in the literature suggest that non-native hydrophobic interactions may occur generally in partially folded states. This can alter the interpretation of mutational protein engineering results in terms of native-like side chain interactions. In addition, since the intermediate exists after the rate-limiting step and Rd-apocyt b(562) folds very rapidly (k(f) approximately 10(4) s(-1)), these results suggest that non-native hydrophobic interactions, in the absence of topological misfolding, are repaired too rapidly to slow folding and cause the accumulation of folding intermediates. More generally, these results illustrate an approach for determining the high-resolution structure of folding intermediates.  相似文献   

10.
The classical Linderstrøm-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (IUN). On the other hand, in an on-pathway three-state system (UIN), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments.  相似文献   

11.
Escherichia coli RNase H folds through a partially folded kinetic intermediate that mirrors a rarely populated, partially unfolded form detectable by native-state hydrogen exchange under equilibrium conditions. Residue 53 is at the interface of two helices known to be structured in this intermediate. Kinetic refolding studies on mutant proteins varying in size and hydrophobicity at residue 53 support a contribution of hydrophobicity to the stabilities of the kinetic intermediate and the transition state. Packing interactions also play a significant role in the stability of these two states, though they play a much larger role in the native-state stability. One dramatic mutation, I53D, results in the conversion from a three-state to a two-state folding mechanism, which is explained most easily through a simple destabilization of the kinetic intermediate such that it is no longer stable with respect to the unfolded state. These results demonstrate that interactions that stabilize an intermediate can accelerate folding if these same interactions are present in the transition state. Our results are consistent with a hierarchical model of folding, where the intermediate consists of native-like interactions, is on-pathway, and is productive for folding.  相似文献   

12.
The FF domain from the human protein HYPA/FBP11 folds via a low-energy on-pathway intermediate (I). Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by (15)N, (13)C(alpha) and methyl(13)C Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by (1)H/(2)H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by (15)N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U<-->I<-->F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone (15)N, (13)C(alpha) and side-chain methyl (13)C chemical shifts, with further information from protection factors for the backbone amide groups from (1)H/(2)H-exchange. Notably, helices H1-H3 are at least partially formed in I, while helix H4 is largely disordered. Chemical shift differences for the methyl (13)C nuclei suggest a paucity of stable, native-like hydrophobic interactions in I. These data are consistent with Phi-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and Phi data can elucidate whole experimental folding pathways.  相似文献   

13.
The refolding reaction of S54G/P55N ribonuclease T1 is a two-step process, where fast formation of a partly folded intermediate is followed by the slow reaction to the native state, limited by a trans --> cis isomerization of Pro39. The hydrodynamic radius of this kinetic folding intermediate was determined by real-time diffusion NMR spectroscopy. Its folding to the native state was monitored by a series of 128 very fast 2D (15)N-HMQC spectra, to observe the kinetics of 66 individual backbone amide probes. We find that the intermediate is as compact as the native protein with many native chemical shifts. All 66 analyzed amide probes follow the rate-limiting prolyl isomerization, which indicates that this cooperative refolding reaction is fully synchronized. The stability of the folding intermediate was determined from the protection factors of 45 amide protons derived from a competition between refolding and H/D exchange. The intermediate has already gained 40% of the Gibbs free energy of refolding with many protected amides in not-yet-native regions.  相似文献   

14.
The B-domain of protein A has one of the simplest protein topologies, a three-helix bundle. Its folding has been studied as a model for elementary steps in the folding of larger proteins. Earlier studies suggested that folding might occur by way of a helical hairpin intermediate. Equilibrium hydrogen exchange measurements indicate that the C-terminal helical hairpin could be a potential folding intermediate. Kinetic refolding experiments were performed using stopped-flow circular dichroism and NMR hydrogen-deuterium exchange pulse labeling. Folding of the entire molecule is essentially complete within the 6 ms dead time of the quench-flow apparatus, indicating that the intermediate, if formed, progresses rapidly to the final folded state. Site-directed mutagenesis of the isoleucine residue at position 16 was used to generate a variant protein containing tryptophan (the 116 W mutant). The formation of the putative folding intermediate was expected to be favored in this mutant at the expense of the native folded form, due to predicted unfavorable steric interactions of the bulky tryptophan side chain in the folded state. The 116 W mutant refolds completely within the dead time of a stopped-flow fluorescence experiment. No partly folded intermediate could be detected by either kinetic or equilibrium measurements. Studies of peptide fragments suggest that the protein A sequence has an intrinsic propensity to form a helix II/helix III hairpin. However, its stability appears to be marginal (of the order of 1/2 kT) and it could not be an obligatory intermediate on a defined folding pathway. These results explicitly demonstrate that the protein A B domain folds extremely rapidly by an apparent two-state mechanism without formation of stable partly folded intermediates. Similar mechanisms may also be involved in the rapid folding of subdomains of larger proteins to form the compact molten globule intermediates that often accumulate during the folding process.  相似文献   

15.
Structural insights into the equilibrium folding mechanism of the alpha subunit of tryptophan synthase (αTS) from Escherichia coli, a (βα)8 TIM barrel protein, were obtained with a pair of complementary nuclear magnetic resonance (NMR) spectroscopic techniques. The secondary structures of rare high-energy partially folded states were probed by native-state hydrogen-exchange NMR analysis of main-chain amide hydrogens. 2D heteronuclear single quantum coherence NMR analysis of several 15N-labeled nonpolar amino acids was used to probe the side chains involved in stabilizing a highly denatured intermediate that is devoid of secondary structure. The dynamic broadening of a subset of isoleucine and leucine side chains and the absence of protection against exchange showed that the highest energy folded state on the free-energy landscape is stabilized by a hydrophobic cluster lacking stable secondary structure. The core of this cluster, centered near the N-terminus of αTS, serves as a nucleus for the stabilization of what appears to be nonnative secondary structure in a marginally stable intermediate. The progressive decrease in protection against exchange from this nucleus toward both termini and from the N-termini to the C-termini of several β-strands is best described by an ensemble of weakly coupled conformers. Comparison with previous data strongly suggests that this ensemble corresponds to a marginally stable off-pathway intermediate that arises in the first few milliseconds of folding and persists under equilibrium conditions. A second, more stable intermediate, which has an intact β-barrel and a frayed α-helical shell, coexists with this marginally stable species. The conversion of the more stable intermediate to the native state of αTS entails the formation of a stable helical shell and completes the acquisition of the tertiary structure.  相似文献   

16.
It is challenging to experimentally define an energy landscape for protein folding that comprises multiple partially unfolded states. Experimental results are often ambiguous as to whether a non-native state is conformationally homogeneous. Here, we tested an approach combining systematic mutagenesis and a Br?nsted-like analysis to reveal and quantify conformational heterogeneity of folding intermediate states. Using this method, we resolved an otherwise apparently homogeneous equilibrium folding intermediate of Borrelia burgdorferi OspA into two conformationally distinct species and determined their relative populations. Furthermore, we mapped the structural differences between these intermediate species, which are consistent with the non-native species that we previously proposed based on native-state hydrogen exchange studies. When treated as a single state, the intermediate ensemble exhibited fractional Phi-values for mutations and Hammond-type behaviors that are often observed for folding transition states. We found that a change in relative population of the two species within the intermediate ensemble explains these properties well, suggesting that fractional Phi-values and Hammond-type behaviors exhibited by folding intermediates and transition states may arise more often from conformational heterogeneity than from a single partial structure. Our results are consistent with the presence of multiple minima in a rugged energy landscape predicted from theoretical studies. The method described here provides a promising means to probe a complex folding energy landscape.  相似文献   

17.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

18.
The absence of detectable kinetic and equilibrium folding intermediates by optical probes is commonly taken to indicate that protein folding is a two-state process. However, for some small proteins with apparent two-state behavior, unfolding intermediates have been identified in native-state hydrogen exchange or kinetic unfolding experiments monitored by nuclear magnetic resonance. Rd-apocytochrome b(562), a four-helix bundle, is one such protein. Here, we found another unfolding intermediate for Rd-apocytochrome b(562). It is based on a cooperative transition of (15)N chemical shifts of amide protons as a function of urea concentrations before the global unfolding. We have solved the high-resolution structure of the protein at 2.8 M urea, which is after this cooperative transition but before the global unfolding. All four helices remained intact, but a number of hydrophobic core residues repacked. This intermediate provides a possible structural interpretation for the kinetic unfolding intermediates observed using nuclear magnetic resonance methods for several proteins and has important implications for theoretical studies of protein folding.  相似文献   

19.
It has long been suggested that existence of partially folded intermediates may be essential for proteins to fold in a biologically meaningful time scale. Although partially folded intermediates have been commonly observed in larger proteins, they are generally not detectable in the kinetic folding of smaller proteins (approximately 100 amino acids or less). Recent native-state hydrogen exchange studies suggest that partially folded intermediates may exist behind the rate-limiting transition state in small proteins and evade detection by conventional kinetic methods.  相似文献   

20.
J Lu  F W Dahlquist 《Biochemistry》1992,31(20):4749-4756
Two-dimensional 1H-15N NMR techniques combined with pulsed hydrogen-deuterium exchange have been used to characterize the folding pathway of T4 lysozyme. In the unfolded state, there is little differential protection of the various amides from hydrogen exchange. In the native folded structure, 84 amides of the 164 residues are sufficiently spectrally resolved and protected from solvent exchange to serve as probes of the folding pathway. These probes are located in both the N-terminal and C-terminal domains of the native folded structure of the protein. The studies described here show that at least one intermediate is formed early during refolding at low denaturant concentrations. This intermediate (or intermediates) forms very rapidly (within the 10-ms temporal resolution of our mixing device) under the conditions used and is completed at least 10 times faster than the overall folding event. The intermediate(s) protect(s) from exchange a subset of amides in the N-terminal and C-terminal regions of the protein. In the final folded states these protected regions correspond to two alpha-helices and a beta-sheet region. These amides are protected from exchange by factors between 20 and 200 as compared to the fully unfolded protein. Protection of this magnitude is consistent with the formation of somewhat exposed secondary structure in these regions and could represent a "molten globule"-like or a "framework"-like structure for the intermediate(s) in which specific parts of the sequence form isolated secondary structures that are not stabilized by extensive tertiary interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号