首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary nonpolyposis colorectal cancer (HNPCC) (Amsterdam criteria) is often caused by mutations in mismatch repair (MMR) genes, and tumors of patients with HNPCC show microsatellite instability (MSI-high phenotype). Germline mutations of MMR genes have rarely been found in families that have HNPCC or suspected HNPCC and that do not show microsatellite instability (MSI-low phenotype). Therefore, an MSI-high phenotype is often used as an inclusion criterion for mutation testing of MMR genes. Correction of base-base mismatches is the major function of MSH6. Since mismatches present with an MSI-low phenotype, we assumed that the phenotype in patients with HNPCC-related tumors might be associated with MSH6 germline mutations. We divided 36 patients with suspected HNPCC into an MSI-low group (n=18) and an MSI-high group (n=18), on the basis of the results of MSI testing. Additionally, three unrelated patients from Amsterdam families with MSI-low tumors were investigated. All patients were screened for MSH2, MLH1, and MSH6 mutations. Four presumably causative MSH6 mutations were detected in the patients (22%) who had suspected HNPCC and MSI-low tumors. Furthermore, we detected one frameshift mutation in one of the three patients with HNPCC and MSI-low tumors. In the MSI-high group, one MSH6 missense mutation was found, but the same patient also had an MLH1 mutation, which may explain the MSI-high phenotype. These results suggest that MSH6 may be involved in a substantial proportion of patients with HNPCC or suspected HNPCC and MSI-low tumors. Our data emphasize that an MSI-low phenotype cannot be considered an exclusion criterion for mutation testing of MMR genes in general.  相似文献   

2.
Hereditary nonpolyposis colorectal cancer (HNPCC) is due to defects in DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and to a lesser extent PMS2. Of 466 suspected HNPCC families, we defined 54 index patients with either tumors of high microsatellite instability (MSI-H) and/or loss of expression for either MLH1, MSH2, and/or MSH6, but without a detectable pathogenic point mutation in these genes. This study cohort was augmented to 64 patients by 10 mutation-negative index patients from Amsterdam families where no tumors were available. Deletion/duplication screening using the multiplex ligation-dependent probe amplification (MLPA) revealed 12 deletions in MSH2 and two deletions in MLH1. These deletions constitute 17% of pathogenic germline alterations but elucidate the susceptibility to HNPCC in only 22% of the mutation-negative study cohort, pointing towards other mutation mechanisms for an inherited inactivation of MLH1 or MSH2. We describe here four novel deletions. One novel and one known type of deletion were found for three and two unrelated families, respectively. MLPA analysis proved a reliable method for the detection of genomic deletions in MLH1 and MSH2; however, sequence variations in the ligation-probe binding site can mimic single exon deletions.  相似文献   

3.
To explore the characteristics of DNA mismatch repair gene mutations in Chinese patients with hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome, the MLH1 and MSH2 genes from probands of 76 HNPCC families were sequenced. By doing so, two frame-shift mutations, three splice-site mutations and fourteen missense mutations (thirteen missense mutations and one nonsense mutation) were identified in the MLH1 gene. In addition, one splice-site mutation and six missense mutations were detected in the MSH2 gene. None of these mutations were detected in 100 matched healthy controls. The remaining mutation-negative cases were subjected to large fragment deletion analysis using multiplex ligation-dependent probe amplification (MLPA). By doing so, five large fragment deletions were detected in the MSH2 gene. No large fragment deletions were detected in the MLH1 gene. We conclude that the MLH1 and MSH2 genes in Chinese HNPCC families exhibit broad mutation spectra.  相似文献   

4.
The diagnosis of hereditary non-polyposis colorectal cancer (HNPCC) is often confirmed by a mutation in one of several mismatch-repair genes, in particular MLH1, MSH2 and MSH6. Presymptomatic diagnosis requires the identification of a mutation causing the disease. Three different deletions of a single amino acid codon have previously been published as assumed pathogenic. The objective of this study was to determine if an MSH2 3 base pair in-frame deletion (N596del) could be used in presymptomatic screening of at-risk individuals. We report on five HNPCC families with the N596del mutation, identified after mutation screening of MSH2 and MLH1. All patients in the families were haplotyped using markers flanking the MSH2 gene. The haplotypes revealed that the five families with high probability descended from only two founders. The N596del segregated with the HNPCC phenotype with lod scores of 3.2 and 2.0 at the recombination fraction of 0.0 in the two founder families. Sequencing of MSH2 and MLH1 did not reveal other pathogenic mutations, and N596del was not identified in 50 healthy controls. The mutation has previously been found expressed in mRNA, and is located in a conserved domain. The results support the hypothesis that N596del is the disease causing mutation and not a clinically silent variation. On this basis, the application of the MSH2 N596del mutation, in presymptomatic screening of HNPCC families, is recommended.  相似文献   

5.
Mismatch repair (MMR) gene mutations cause hereditary nonpolyposis colorectal cancer (HNPCC), a common form of familial colorectal cancer. Among MMR genes, germline MSH6 mutations are often observed in HNPCC-like families with an increased frequency of endometrial cancer. We have previously shown that a proportion of women affected with double primary cancers of the colorectum and endometrium carry germline MSH2 or MLH1 mutations and, thus, belong to HNPCC families. In this study, we have investigated the specific contribution of MSH6 defects to such double primary patients. By sequence analysis of the entire coding region of MSH6, three putative missense mutations were identified in patients with atypical family histories that do not meet HNPCC criteria. Moreover, one of these mutations, a novel substitution Arg901 His, was found in a patient previously shown to carry a truncating germline MLH1 mutation. Thus, MSH6 mutations are likely to contribute to the etiology of double primary cancers of the colorectum and endometrium.  相似文献   

6.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a dominantly inherited cancer syndrome. Germline mutations in five different mismatch repair (MMR) genes, MSH2, MSH6, MLH1, MLH3, and PMS2 are linked to HNPCC. Here, we describe two colon cancer families in which the index patients carry missense mutations in both MSH2 and MSH6. The MSH2 mutation, I145M, is the same in both families, whereas the MSH6 mutations are different (R1095H and L1354Q). The families do not fulfil the international criteria for HNPCC, one family comprising two and the other family four colon cancer patients, all in one generation, resembling a recessive rather than dominant inheritance characteristic of HNPCC. The tumors of the index patients showed microsatellite instability. Functional analysis was performed to determine which one of the mutations could primarily underlie the cancer susceptibility in the families. MSH2 and MSH6 are known to form a heterodimeric complex (MutSalpha) responsible for mismatch recognition. The interaction of each mutated protein with its wild-type partner and with its mutated partner present in the colon cancer patient, and the MMR function of the mutated MutSalpha complexes were determined. Since none of the three mutations affected the MSH2-MSH6 interaction or the function of MutSalpha in an in-vitro MMR assay, our results suggest that alone the mutations do not cause MMR deficiency typical of HNPCC. However, our results do not exclude the possible compound pathogenicity of the two mutations.  相似文献   

7.
Kim YM  Choe CG  Cho SK  Jung IH  Chang WY  Cho M 《BMB reports》2010,43(10):693-697
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome characterized by predisposition to early-onset cancers. HNPCC is caused by heterozygous loss-of-function mutations within the mismatch repair genes MLH1, MSH2, MSH6, PMS1, and PMS2. We genotyped the MLH1 and MSH2 genes in patients suffering from Lynch syndrome and in 11 unrelated patients who were diagnosed with colorectal cancer and had subsequently undergone surgery. Five Lynch syndrome patients carried germline mutations in MLH1 or MSH2. Two of these were identified as known mutations in MLH1: deletion of exon 10 and a point mutation (V384D). The remaining three patients exhibited novel mutations: a duplication (937_942dupGAAGTT) in MLH1; deletion of exons 8, 9, and 10; and a point mutation in MLH1 (F396I) combined with multiple missense mutations in MSH2 (D295G, K808E, Q855P, and I884T). The findings underline the importance of efficient pre-screening of conspicuous cases.  相似文献   

8.
Germline mutations in the DNA mismatch repair (MMR) genes MSH2 and MLH1 are responsible for the majority of hereditary non-polyposis colorectal cancer (HNPCC), an autosomal-dominant early-onset cancer syndrome. Genetic testing of both MSH2 and MLH1 from individuals suspected of HNPCC has revealed a considerable number of missense codons, which are difficult to classify as either pathogenic mutations or silent polymorphisms. To identify novel MLH1 missense codons that impair MMR activity, a prospective genetic screen in the yeast Saccharomyces cerevisiae was developed. The screen utilized hybrid human-yeast MLH1 genes that encode proteins having regions of the yeast ATPase domain replaced by homologous regions from the human protein. These hybrid MLH1 proteins are functional in MMR in vivo in yeast. Mutagenized MLH1 fragments of the human coding region were synthesized by error-prone PCR and cloned directly in yeast by in vivo gap repair. The resulting yeast colonies, which constitute a library of hybrid MLH1 gene variants, were initially screened by semi-quantitative in vivo MMR assays. The hybrid MLH1 genes were recovered from yeast clones that exhibited a MMR defect and sequenced to identify alterations in the mutagenized region. This investigation identified 117 missense codons that conferred a 2-fold or greater decreased efficiency of MMR in subsequent quantitative MMR assays. Notably, 10 of the identified missense codons were equivalent to codon changes previously observed in the human population and implicated in HNPCC. To investigate the effect of all possible codon alterations at single residues, a comprehensive mutational analysis of human MLH1 codons 43 (lysine-43) and 44 (serine-44) was performed. Several amino acid replacements at each residue were silent, but the majority of substitutions at lysine-43 (14/19) and serine-44 (18/19) reduced the efficiency of MMR. The assembled data identifies amino acid substitutions that disrupt MLH1 structure and/or function, and should assist the interpretation of MLH1 genetic tests.  相似文献   

9.
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is an autosomal, dominantly inherited disease accounting for about 1%–5% of all colorectal cancer cases. HNPCC predisposition is caused by germline mutations in at least five genes coding for DNA mismatch repair (MMR) proteins. More than 400 MMR gene mutations have been identified in HNPCC patients. About 90% of mutations affect the MLH1 and MSH2 genes. The mutational spectrum mainly includes point mutations and small deletions or insertions. Here, we report a large 184 base-pair Alu insertion mutation in exon 6 of the MSH2 gene in a German HNPCC family. The inserted sequence contains repetitive Alu sequence elements that present the highest homology with the old Alu J subfamily. The Alu J insertion was most likely derived from Alu-mediated recombination, since Alu J elements have been found close to the insertion site in adjacent introns, and since elements pivotal for Alu retrotransposition are missing. Our results suggest that the recombination event occurred at least one generation ago. This is the first report of an Alu insertion in the coding sequence of a MMR gene as the cause of HNPCC. Our data thus further extend the spectrum of MMR gene mutations causative for HNPCC.M. Kloor and C. Sutter contributed equally to this work  相似文献   

10.
Hereditary non-polyposis colorectal cancer (HNPCC) is a genetic disorder caused by mutation in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, PMS2) which predisposes to colorectal cancer and other malignances, that not yet include sarcomas. For sustaining that soft tissue sarcomas could be HNPCC related malignances, we report on a HNPCC patient with leiomyosarcoma and review the English literature. Overall, we report on eleven cases of soft tissue malignant tumors involving HNPCC patients, with a mean age of 34 years at diagnosis of sarcomas. In the majority of these tumors loss of MSH2 expression can be found at immunohistochemistry (IHC) and in 10 patients a germline mutation in one of the MMR genes was found (7 cases were MSH2 defective and 3 cases MLH1 defective). Data for supporting our hypothesis are also experimental, epidemiologic, histopathological: excess of sarcomas in PMS2 defective mice; sporadic soft tissue sarcomas are rare, with mean age at onset of 56 years and normal IHC for MMR proteins. In conclusion, the data collected support the hypothesis that soft tissue sarcomas could be included in the spectrum of tumors that, even if rarely, depend on MMR genes deficiency.  相似文献   

11.
Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by inherited mutations in DNA mismatch-repair genes, most commonly MLH1 or MSH2. The role MSH6 plays in inherited cancer susceptibility is less well defined. The aim of this study was to investigate the penetrance and expressivity of MSH6 mutations in kindreds ascertained through endometrial cancer probands unselected for family history. Detailed pedigrees were constructed for six MSH6 mutation carriers. All reported cancers and precancers were confirmed, and tissues were obtained when available. Tumors were analyzed for microsatellite instability (MSI) and for expression of MSH2, MLH1, and MSH6. MSH6 mutation status was determined for 59 family members. Of these 59 individuals, 19 (32%) had confirmed cancers and precancers. There was an excess of mutation carriers among the 19 affected family members (11 [58%] of 19) compared with those among the 40 unaffecteds (8 [20%] of 40, P=.0065, odds ratio = 5.5, 95% CI = 1.66-18.19). In four of the seven tumors analyzed from mutation carriers other than the probands, MSI and/or MMR protein expression was consistent with the involvement of MSH6. Overall estimated penetrance of the MHS6 mutations was 57.7%. Of the tumors in mutation carriers, 78% were part of the extended HNPCC spectrum. This study demonstrates that MSH6 germline mutations are, indeed, associated with increased cancer risk and that the penetrance of mutations may be higher than appreciated elsewhere. A combination of MSI and immunohistochemistry analyses may be helpful in screening for MSH6 mutation carriers.  相似文献   

12.
Wei W  Liu F  Liu L  Li Z  Zhang X  Jiang F  Shi Q  Zhou X  Sheng W  Cai S  Li X  Xu Y  Nan P 《BMB reports》2011,44(5):317-322
Hereditary non-polyposis Colorectal Cancer (HNPCC) is an autosomal dominant inheritance syndrome. HNPCC is the most common hereditary variant of colorectal cancer (CRC), which accounts for 2-5% CRCs, mainly due to hMLH1 and hMSH2 mutations that impair DNA repair functions. Our study aimed to identify the patterns of hMSH2 and hMLH1 mutations in Chinese HNPCC patients. Ninety-eight unrelated families from China meeting Amsterdam or Bethesda criteria were included in our study. Germline mutations in MLH1 and MSH2 genes, located in the exons and the splice-site junctions, were screened in the 98 probands by direct sequencing. Eleven mutations were found in ten patients (11%), with six in MLH1 (54.5%) and five in MSH2 (45.5%) genes. One patient had mutations in both MLH1 and MSH2 genes. Three novel mutations in MLH1 gene (c.157_160delGAGG, c.2157dupT and c.-64G>T) were found for the first time, and one suspected hotspot in MSH2 (c.1168C>T) was revealed.  相似文献   

13.
Lynch syndrome is the most common form of hereditary colorectal cancer and is caused by germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. Mutation carriers have an increased lifetime risk of developing colorectal cancer as well as other extracolonic tumours. The aim of the current study was to evaluate the frequency and distribution of mutations in the MLH1, MSH2 and MSH6 genes within a cohort of Cypriot families that fulfilled the revised Bethesda guidelines. The study cohort included 77 patients who fulfilled at least one of the revised Bethesda guidelines. Mutational analysis revealed the presence of 4 pathogenic mutations, 3 in the MLH1 gene and 1 in the MSH2 gene, in 5 unrelated individuals. It is noted that out of the 4 pathogenic mutations detected, one is novel (c.1610delG in exon 14 of the MLH1) and has been detected for the first time in the Cypriot population. Overall, the pathogenic mutation detection rate in our patient cohort was 7%. This percentage is relatively low but could be explained by the fact that the sole criterion for genetic screening was compliance to the revised Bethesda guidelines. Larger numbers of Lynch syndrome families and screening of the two additional predisposition genes, PMS2 and EPCAM, are needed in order to decipher the full spectrum of mutations associated with Lynch syndrome predisposition in Cyprus.  相似文献   

14.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a syndrome characterized by familial predisposition to colorectal carcinoma and extracolonic cancers of the gastrointestinal, urological, and female reproductive tracts. This dominant disorder is caused by germline defects in one of at least five DNA mismatch repair (MMR) genes: hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 (GTBP). Germline mutations of hMSH2 and hMLH1 are also frequently identified in families not fulfilling all the Amsterdam criteria, thereby demonstrating that the involvement of these genes is not confined to typical HNPCC. To evaluate the respective involvement of the various MMR genes in typical and incomplete HNPCC syndromes, we have performed an analysis of the hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in a large series of French kindreds (n=75) with colorectal tumors and/or aggregation of extracolonic cancers belonging to the HNPCC spectrum. Mutational analysis has been performed in all families, without preselection for the tumor phenotype. We have detected 26 pathogenic germline mutations of the hMLH1 and hMSH2 genes and several novel variants of the hPMS1, hPMS2, and hMSH6 genes. Our data confirm that, regardless of the type of families and the tumor phenotype, hPMS1, hPMS2, and hMSH6 germline mutations are rare in familial aggregation of colorectal cancers. Furthermore, they suggest that the presence of multiple primary malignancies in a single individual and the observation of extracolonic tumors in relatives of a colorectal cancer patient should be included among the guidelines for referring patients for genetic testing. Electronic Publication  相似文献   

15.
Hereditary nonpolyposis colorectal cancer (HNPCC) accounts for approximately 2% of all colorectal cancer (CRC) cases and is the most common hereditary CRC syndrome. We have previously reported a high incidence of microsatellite instability (MSI) and germline mismatch repair (MMR) gene mutations in young Hong Kong Chinese with CRC. Ongoing studies at the Hereditary Gastrointestinal Cancer Registry in Hong Kong have revealed a unique germline MSH2 c.1452-1455delAATG mutation that has not been reported in other ethnic groups. Detailed analysis showed that this specific MSH2 mutation constituted 21% of all germline MMR gene mutations and 36% of all MSH2 germline mutations identified. We designed a specific PCR-based diagnostic test on paraffin-embedded tissues and identified this germline mutation in 2 (1.5%) of 138 consecutive patients with early-onset CRC (<46 years of age at diagnosis). Haplotype analysis was performed using 11 microsatellite markers located between D2S391 and D2S123. All 10 families had the same disease haplotype, suggesting a founder effect. These 10 families all originated from the Chinese province of Guangdong, which historically included Hong Kong. It is the most populous of the Chinese provinces, with a population of >93 million. Further analysis suggested that this founder mutation may date back to between 22 and 103 generations ago. The identification of this MSH2 founder mutation has important implications for the design of mutation-detection strategies for the southern Chinese population. Since there were major emigrations from Hong Kong and Guangdong province during the 19th and 20th centuries, this finding is also significant for Chinese communities worldwide.  相似文献   

16.
Functional analysis of HNPCC-related missense mutations in MSH2   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.  相似文献   

17.
Mutation analysis of large genes, such as MSH2 and MLH1, is time-consuming and expensive. We investigated the sensitivity and specificity of DHPLC analysis for the detection of mutations within both MSH2 and MLH1. Studies included a series of 46 patients affected by colorectal cancer from HNPCC families. We confirmed 19 changes previously identified by DNA sequencing and, in a blind study, an additional 16 rare alterations including four mutations not previously described. Generally, false negative results were not observed. Elution profiles were highly characteristic for a given change and in 98.5% cases allowed the distinction between novel alterations and previously identified mutations and polymorphisms. For the detection of changes in almost all amplicons, it was sufficient to use just one denaturing temperature. DHPLC was confirmed to be highly sensitive, specific and a cost-effective technique with particularly high potential for the detection of MSH2 and MLH1 gene mutations in the diagnostic setting.  相似文献   

18.
Two susceptibility loci for hereditary nonpolyposis colo-rectal cancer (HNPCC) have been identified, and each contains a mismatch repair gene: MSH2 on chromosome 2p and MLH1 on chromosome 3p. We studied the involvement of these loci in 13 large HNPCC kindreds originating from three different continents. Six families showed close linkage to the 2p locus, and a heritable mutation of the MSH2 gene was subsequently found in four. The 2p-linked kindreds included a family characterized by the lack of extracolonic manifestations (Lynch I syndrome), as well as two families with cutaneous manifestations typical of the Muir-Torre syndrome. Four families showed evidence for linkage to the 3p locus, and a heritable mutation of the MLH1 gene was later detected in three. One 3p-linked kindred was of Amerindian origin. Of the remaining three families studied for linkage, one showed lod scores compatible with exclusion of both MSH2 and MLH1, while lod scores obtained in the other two families suggested exclusion of one HNPCC locus (MSH2 or MLH1) but were uninformative for markers flanking the other locus. Our results suggest that mismatch repair genes on 2p and 3p account for a major share of HNPCC in kindreds that can be evaluated by linkage analysis.  相似文献   

19.
Lynch syndrome (LS) accounts for 3–5% of all colorectal cancers (CRC) and is inherited in an autosomal dominant fashion. This syndrome is characterized by early CRC onset, high incidence of tumors in the ascending colon, excess of synchronous/metachronous tumors and extra-colonic tumors. Nowadays, LS is regarded of patients who carry deleterious germline mutations in one of the five mismatch repair genes (MMR), mostly in MLH1 and MSH2, but also in MSH6, PMS1 and PMS2. To comprehensively characterize 116 Brazilian patients suspected for LS, we assessed the frequency of germline mutations in the three minor genes MSH6, PMS1 and PMS2 in 82 patients negative for point mutations in MLH1 and MSH2. We also assessed large genomic rearrangements by MLPA for detecting copy number variations (CNVs) in MLH1, MSH2 and MSH6 generating a broad characterization of MMR genes. The complete analysis of the five MMR genes revealed 45 carriers of pathogenic mutations, including 25 in MSH2, 15 in MLH1, four in MSH6 and one in PMS2. Eleven novel pathogenic mutations (6 in MSH2, 4 in MSH6 and one in PMS2), and 11 variants of unknown significance (VUS) were found. Mutations in the MLH1 and MSH2 genes represented 89% of all mutations (40/45), whereas the three MMR genes (MSH6, PMS1 and PMS2) accounted for 11% (5/45). We also investigated the MLH1 p.Leu676Pro VUS located in the PMS2 interaction domain and our results revealed that this variant displayed no defective function in terms of cellular location and heterodimer interaction. Additionally, we assessed the tumor phenotype of a subset of patients and also the frequency of CRC and extra-colonic tumors in 2,365 individuals of the 116 families, generating the first comprehensive portrait of the genetic and clinical aspects of patients suspected of LS in a Brazilian cohort.  相似文献   

20.
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal, dominantly inherited, colorectal cancer (CRC) predisposition syndrome caused by germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1 and MSH2. Thus far, only limited data exist on the occurrence of genetic anticipation in HNPCC, i.e. the earlier age at diagnosis of CRC in successive generations. Performing nonparametric distribution-free statistical analyses, we investigated 55 parent–child pairs who had been diagnosed with CRC and who came from 21 Swiss HNPCC families with characterised MMR germline mutation (15 in MLH1 and 6 in MSH2). The overall median age at diagnosis was 43 years, with an interquartile range (IQR) of 14 and incidence ages ranging from 18 to 62 years. Descendants of HNPCC patients (median age at diagnosis 39 years, IQR=12) were found to be diagnosed with CRC significantly earlier than their parents (47 years, IQR=10), with the median of the paired age difference amounting to 8 years (IQR=15; P<0.0001). Birth cohort effects could be excluded, since the same, statistically significant, age difference was also observed in the oldest offspring birth cohort (birth year <1916; P=0.01). Genetic anticipation appeared to be more pronounced when the disease allele was transmitted through the father than through the mother (median age difference 11 vs. 4 years, respectively; both P<0.01). If confirmed in larger, ideally prospective studies, these results may have important implications for genetic counselling and clinical management of HNPCC families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号