首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Escherichia coli contains a large CspA family consisting of nine homologues, in which four are cold-shock inducible and one is stationary-phase inducible. Here, we demonstrate that Myxococcus xanthus possesses at least five CspA homologues, CspA to CspE. Hydrophobic residues forming a hydrophobic core, and aromatic residues, which are included in functional motifs RNP-1 and RNP-2 involved in binding to RNA and ssDNA, are well conserved. These facts suggest that M. xanthus CspA homologues have a similar structure and function as E. coli CspA. However, in contrast to the E. coli CspA family, the expression of M. xanthus csp genes as judged by primer extension analysis is not significantly regulated by temperature changes, except for cspB of which expression was reduced to less than 10% upon heat shock at 42 degrees C. Such constitutive expression of the csp genes may be important for M. xanthus, a soil-dwelling bacterium, to survive under conditions of exposure to various environmental changes in nature.  相似文献   

3.
Escherichia coli cold shock protein, CspA, folds very rapidly (time constant, tau = 4 msec) by an apparent two-state mechanism. However, recent time-resolved infrared (IR) temperature-jump experiments indicate that the folding trajectory of CspA may be more complicated. The sole tryptophan of wild-type CspA (Trp11), which is used to monitor the folding process by fluorescence spectroscopy, is located in an unusual aromatic cluster on the surface of CspA within the nucleic acid binding site. To gain a more global picture of the folding kinetics of CspA and to determine if there are any previously undetected intermediates, we have introduced a second tryptophan at three different surface locations in the protein. The three mutations did not significantly alter the tertiary structure of CspA, although two of the substitutions were found to be slightly stabilizing. Two-state folding, as detected by stopped-flow fluorescence spectroscopy, is preserved in all three mutants. These results indicate that the fast folding of CspA is driven by a concerted mechanism.  相似文献   

4.
Although beta-sheets represent a sizable fraction of the secondary structure found in proteins, the forces guiding the formation of beta-sheets are still not well understood. Here we examine the folding of a small, all beta-sheet protein, the E. coli major cold shock protein CspA, using both equilibrium and kinetic methods. The equilibrium denaturation of CspA is reversible and displays a single transition between folded and unfolded states. The kinetic traces of the unfolding and refolding of CspA studied by stopped-flow fluorescence spectroscopy are monoexponential and thus also consistent with a two-state model. In the absence of denaturant, CspA refolds very fast with a time constant of 5 ms. The unfolding of CspA is also rapid, and at urea concentrations above the denaturation midpoint, the rate of unfolding is largely independent of urea concentration. This suggests that the transition state ensemble more closely resembles the native state in terms of solvent accessibility than the denatured state. Based on the model of a compact transition state and on an unusual structural feature of CspA, a solvent-exposed cluster of aromatic side chains, we propose a novel folding mechanism for CspA. We have also investigated the possible complications that may arise from attaching polyhistidine affinity tags to the carboxy and amino termini of CspA.  相似文献   

5.
Escherichia coli CspA is a small all-beta-sheet protein that folds fast (tau = 4 ms) via an apparent two-state mechanism. Our previous studies have shown that a large aromatic cluster on the surface of the protein participates in the rate-limiting step of folding and thus may be part of the folding nucleus of this protein. To obtain a more detailed picture of molecular events at the peptide backbone during unfolding and folding of CspA, we used native state hydrogen exchange and nuclear magnetic resonance spectroscopy (NMR). The experiments with native CspA were performed over a range of pH values from low pH, where exchange is governed by a rapid equilibrium before chemical exchange (EX2 exchange), to high pH, where exchange is dictated by the rate of unfolding (EX1 exchange). Rates of folding and unfolding were determined for 11 residues. The distribution of rates of folding within the structure of CspA suggests that hairpin turns, including one near the aromatic cluster, may nucleate the folding of CspA.  相似文献   

6.
7.
Escherichia coli contains the CspA family, consisting of nine proteins (CspA to CspI), in which CspA, CspB, and CspG have been shown to be cold shock inducible and CspD has been shown to be stationary-phase inducible. The cspI gene is located at 35.2 min on the E. coli chromosome map, and CspI shows 70, 70, and 79% identity to CspA, CspB, and CspG, respectively. Analyses of cspI-lacZ fusion constructs and the cspI mRNA revealed that cspI is cold shock inducible. The 5'-untranslated region of the cspI mRNA consists of 145 bases and causes a negative effect on cspI expression at 37 degrees C. The cspI mRNA was very unstable at 37 degrees C but was stabilized upon cold shock. Analyses of the CspI protein on two-dimensional gel electrophoresis revealed that CspI production is maximal at or below 15 degrees C. Taking these results together, E. coli possesses a total of four cold shock-inducible proteins in the CspA family. Interestingly, the optimal temperature ranges for their induction are different: CspA induction occurs over the broadest temperature range (30 to 10 degrees C), CspI induction occurs over the narrowest and lowest temperature range (15 to 10 degrees C), and CspB and CspG occurs at temperatures between the above extremes (20 to 10 degrees C).  相似文献   

8.
9.
Escherichia coli contains a large CspA family, CspA to CspI. Here, we demonstrate that E. coli is highly protected against cold-shock stress, as these CspA homologues existed at approximately a total of two million molecules per cell at low temperature and growth defect was not observed until four csp genes (cspA, cspB, cspE and cspG) were deleted. The quadruple-deletion strain acquired cold sensitivity and formed filamentous cells at 15 degrees C although chromosomes were normally segregated. The cold-sensitivity and filamentation phenotypes were suppressed by all members of the CspA family except for CspD, which causes lethality upon overexpression. Interestingly, the cold sensitivity of the mutant was also suppressed by the S1 domain of polynucleotide phosphorylase (PNPase), which also folds into a beta-barrel structure similar to that of CspA. The present results show that cold-shock proteins and S1 domains share not only the tertiary structural similarity but also common functional properties, suggesting that these seemingly distinct protein categories may have evolved from a common primordial RNA-binding protein.  相似文献   

10.
11.
The major secreted protein of Clostridium acetobutylicum NCIB 8052, a choline-containing strain, is CspA (clostridial secreted protein). It appears to be a 115,000-M(r) glycoprotein that specifically recognizes the choline residues of the cell wall. Polyclonal antibodies raised against CspA detected the presence of the protein in the cell envelope and in the culture medium. The soluble CspA protein has been purified, and an oligonucleotide probe, prepared from the determined N-terminal sequence, has been used to clone the cspA gene which encodes a protein with 590 amino acids and an M(r) of 63,740. According to the predicted amino acid sequence, CspA is synthesized with an N-terminal segment of 26 amino acids characteristic of prokaryotic signal peptides. Expression of the cspA gene in Escherichia coli led to the production of a major anti-CspA-labeled protein of 80,000 Da which was purified by affinity chromatography on DEAE-cellulose. A comparison of CspA with other proteins in the EMBL database revealed that the C-terminal half of CspA is homologous to the choline-binding domains of the major pneumococcal autolysin (LytA amidase), the pneumococcal antigen PspA, and other cell wall-lytic enzymes of pneumococcal phages. This region, which is constructed of four repeating motifs, also displays a high similarity with the glucan-binding domains of several streptococcal glycosyltransferases and the toxins of Clostridium difficile.  相似文献   

12.
At pH 2.0, acid-denatured CspA undergoes a slow self-assembly process, which results in the formation of insoluble fibrils. 1H-15N HSQC, 3D HSQC-NOESY, and 15N T2 NMR experiments have been used to characterize the soluble components of this reaction. The kinetics of self-assembly show a lag phase followed by an exponential increase in polymerization. A single set of 1H-15N HSQC cross-peaks, corresponding to acid-denatured monomers, is observed during the entire course of the reaction. Under lag phase conditions, 15N resonances of residues that constitute the beta-strands of native CspA are selectively broadened with increasing protein concentration. The dependence of 15N T2 values on spin echo period duration demonstrates that line broadening is due to fast NMR exchange between acid-denatured monomers and soluble aggregates. Exchange contributions to T2 relaxation correlate with the squares of the chemical shift differences between native and acid-denatured CspA, and point to a stabilization of native-like structure upon aggregation. Time-dependent changes in 15N T2 relaxation accompanying the exponential phase of polymerization suggest that the first three beta-strands may be predominantly responsible for association interfaces that promote aggregate growth. CspA serves as a useful model system for exploring the conformational determinants of denatured protein misassembly.  相似文献   

13.
14.
Bacterial genomes encode several families of protein paralogs. Discrimination between functional divergence and redundancy among paralogs is challenging due to their sequence conservation. Here, we investigated whether the amino acid differences present in the cold shock protein (CSP) paralogs of Staphylococcus aureus were responsible for functional specificity. Since deletion of cspA reduces the synthesis of staphyloxanthin (STX), we used it as an in vivo reporter of CSP functionality. Complementation of a ΔcspA strain with the different S. aureus CSP variants showed that only CspA could specifically restore STX production by controlling the activity of the stress-associated sigma B factor (σB). To determine the amino acid residues responsible for CspA specificity, we created several chimeric CSPs that interchanged the amino acid differences between CspA and CspC, which shared the highest identity. We demonstrated that CspA Pro58 was responsible for the specific control of σB activity and its associated phenotypes. Interestingly, CspC gained the biological function of CspA when the E58P substitution was introduced. This study highlights how just one evolutionarily selected amino acid change may be sufficient to modify the specific functionality of CSP paralogs.  相似文献   

15.
16.
Escherichia coli CspA is a member of the cold shock protein family. All cold shock proteins studied to date fold rapidly by an apparent two-state mechanism. CspA contains an unusual cluster of aromatic amino acids on its surface that is necessary for nucleic acid binding and also provides stability to CspA (Hillier et al., 1998). To elucidate the role this aromatic cluster plays in the determining the folding rate and pathway of CspA, we have studied the folding kinetics of mutants containing either leucine or serine substituted for Phe 18, Phe20, and/or Phe31. The leucine substitutions are found to accelerate folding and the serine substitutions to decelerate folding. Because these residues exert effects on the free energy of the folding transition state, they may be necessary for nucleating folding. They are not responsible, however, for the very compact, native-like transition state ensemble seen in the cold shock proteins, as the refolding rates of the mutants all show a similar, weak dependence of unfolding rate on denaturant concentration. Using mutant cycle analysis, we show that there is energetic coupling among the three residues between the unfolded and transition states, suggesting that the cooperative nature of these interactions helps to determine the unfolding rate. Overall, our results suggest that separate evolutionary pressures can act simultaneously on the same group of residues to maintain function, stability, and folding rate.  相似文献   

17.
The stability of protein is defined not only by the hydrogen bonding, hydrophobic effect, van der Waals interactions, and salt bridges. Additional, much more subtle contributions to protein stability can arise from surface residues that change their properties upon unfolding. The recombinant major cold shock protein of Escherichia coli CspA an all-beta protein unfolds reversible in a two-state manner, and behaves in all other respects as typical globular protein. However, the enthalpy of CspA unfolding strongly depends on the pH and buffer composition. Detailed analysis of the unfolding enthalpies as a function of pH and buffers with different heats of ionization shows that CspA unfolding in the pH range 5.5-9.0 is linked to protonation of an amino group. This amino group appears to be the N-terminal alpha-amino group of the CspA molecule. It undergoes a 1.6 U shift in pKa values between native and unfolded states. Although this shift in pKa is expected to contribute approximately 5 kJ/mol to CspA stabilization energy the experimentally observed stabilization is only approximately 1 kJ/mol. This discrepancy is related to a strong enthalpy-entropy compensation due, most likely, to the differences in hydration of the protonated and deprotonated forms of the alpha-amino group.  相似文献   

18.
B Mayr  T Kaplan  S Lechner    S Scherer 《Journal of bacteriology》1996,178(10):2916-2925
Whole-cell protein patterns of a psychrotrophic Bacillus cereus strain from cultures grown at 7 and 30 degrees C were compared. This analysis revealed that at least three major proteins are expressed at a significantly higher rate at 7 degrees C than at 30 degrees C. The most abundant of these cold-induced proteins was a small polypeptide of 7.5 kDa, designated CspA, of B. cereus. In addition, four small proteins very similar in size to CspA were seen on both 7 degrees C and 30 degrees C two-dimensional protein gels. Immunoblot analysis using B. cereus anti-CspA antibodies indicated that the five proteins described above plus an additional sixth protein not visible on silver-stained two-dimensional gels are members of a B. cereus cold shock protein family. This hypothesis was corroborated by cloning and sequencing of the genes encoding five proteins of this family. The protein sequences deduced are highly similar and show homology to small procaryotic cold shock proteins and to the cold shock domain of eucaryotic Y-box proteins. Besides CspA, only one of the additional five CspA homologs was slightly cold inducible. In the presence of 100 mM NaCl, the two purified members of the protein family (CspA and CspE) elute as dimers at an apparent molecular mass of 15 kDa from a gel filtration column. At higher salt concentrations, they dissociate into their monomers. Their ability to bind to the ATTGG motif of single-stranded oligonucleotides was demonstrated by band shift analysis.  相似文献   

19.
The family of bacterial major cold shock proteins is characterized by a conserved sequence of 65-75 amino acid residues long which form a three-dimensional structure consisting of five beta-sheets arranged into a beta-barrel topology. CspA from Escherichia coli and CspB from Bacillus subtilis are typical representative members of this class of proteins. The exact biological role of these proteins is still unclear; however, they have been implicated to possess ssDNA-binding activity. In this paper, we report the results of a comparative quantitative analysis of ssDNA-binding activity of CspA and CspB. We show that in spite of high homology on the level of primary structure and very similar three-dimensional structures, CspA and CspB have different ssDNA-binding properties. Both proteins preferentially bind polypyrimidine ssDNA templates, but CspB binds to the T-based templates with one order of magnitude higher affinity than to U- or C-based ssDNA, whereas CspA binds T-, U- or C-based ssDNA with comparable affinity. They also show similarities and differences in their binding to ssDNA at high ionic strength. The results of these findings are related to the chemical structure of DNA bases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号