首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli cold shock protein CsdA is a member of the DEAD box family of ATP-dependent RNA helicases, which share a core of nine conserved motifs. The DEAD (Asp-Glu-Ala-Asp) motif for which this family is named has been demonstrated to be essential for ATP hydrolysis. We show here that CsdA exhibits in vitro ATPase and helicase activities in the presence of short RNA duplexes with either 3' or 5' extensions at 15 degrees C. In contrast to wild-type CsdA, a DQAD variant of CsdA (Glu-157-->Gln) had no detectible helicase or ATPase activity at 15 degrees C in vitro. A plasmid encoding the DQAD variant was also unable to suppress the impaired growth of the csdA null mutant at 15 degrees C. Plasmid-encoded CsdADelta444, which lacks most of the carboxy-terminal extension, enhanced the growth of a csdA null mutant at 25 degrees C but not at 15 degrees C; this truncated protein also has limited in vitro activity at 15 degrees C. These results support the physiological function of CsdA as a DEAD box ATP-dependent RNA helicase at low temperature.  相似文献   

2.
Until now, peptidoglycan O-acetyl transferases (Oat) were only described for their peptidoglycan O-acetylating activity and for their implication in the control of peptidoglycan hydrolases. In this study, we show that a Lactobacillus plantarum mutant lacking OatA is unable to uncouple cell elongation and septation. Wild-type cells showed an elongation arrest during septation while oatA mutant cells continued to elongate at a constant rate without any observable pause during the cell division process. Remarkably, this defect does not result from a default in peptidoglycan O-acetylation, since it can be rescued by wild-type OatA as well as by a catalytic mutant or a truncated variant containing only the transmembrane domain of the protein. Consistent with a potential involvement in division, OatA preferentially localizes at mid-cell before membrane invagination and remains at this position until the end of septation. Overexpression of oatA or its inactive variants induces septation-specific aberrations, including asymmetrical and dual septum formation. Overproduction of the division inhibitors, MinC or MinD, leads to cell filamentation in the wild type while curved and branched cells are observed in the oatA mutant, suggesting that the Min system acts differently on the division process in the absence of OatA. Altogether, the results suggest that OatA plays a key role in the spatio-temporal control of septation, irrespective of its catalytic activity.  相似文献   

3.
CsdA, a DEAD-box protein from Escherichia coli, has been proposed to participate in a variety of processes, such as translation initiation, gene regulation after cold-shock, mRNA decay and biogenesis of the small ribosomal subunit. Whether the protein really plays a direct role in these multiple processes is however, not clear. Here, we show that CsdA is involved in the biogenesis of the large rather than the small ribosomal subunit. Deletion of the csdA gene leads to a deficit in free 50S subunits at low temperatures and to the accumulation of a new particle sedimenting around 40S. Analysis of the RNA and protein contents of this particle indicates that it corresponds to a mis-assembled large subunit. Sucrose gradient fractionation shows that in wild-type cells CsdA associates mainly with a pre50S particle. Presumably the RNA helicase activity of CsdA permits a structural rearrangement during 50S biogenesis at low temperature. We showed previously that SrmB, another DEAD-box RNA helicase, is also involved in 50S assembly in E.coli. Our results suggest that CsdA is required at a later step than SrmB. However, over-expression of CsdA corrects the ribosome defect of the srmB-deleted strain, indicating that some functional overlap exists between the two proteins.  相似文献   

4.
We report here the identification of a new lipoprotein, NlpI, in Escherichia coli K-12. The NlpI structural gene (nlpI) is located between the genes pnp (polynucleotide phosphorylase) and deaD (RNA helicase) at 71 min on the E. coli chromosome. The nlpI gene encodes a putative polypeptide of approximately 34 kDa, and multiple lines of evidence clearly demonstrate that NlpI is indeed a lipoprotein. An nlpI::cm mutation rendered growth of the cells osmotically sensitive, and incubation of the insertion mutant at an elevated temperature resulted in the formation of filaments. The altered phenotype of the mutant was a direct consequence of the mutation in nlpI, since it was complemented by the wild-type nlpI gene alone. Overexpression of the unaltered nlpI gene in wild-type cells resulted in the loss of the rod morphology and the formation of single prolate ellipsoids and pairs of prolate ellipsoids joined by partial constrictions. NlpI may be important for an as-yet-undefined step in the overall process of cell division.  相似文献   

5.
MreB is thought to be a bacterial actin homolog that defines the morphology of rod-shaped bacteria. Rhodobacter sphaeroides changes shape, from a rod to coccobacillus, and undergoes extensive cytoplasmic membrane invagination when it switches from aerobic to photoheterotrophic growth. The role of MreB in defining R. sphaeroides shape was therefore investigated. Attempts at deleting or insertionally inactivating mreB were unsuccessful under all growth conditions. Immunofluorescence microscopy showed MreB localized to mid-cell in elongating cells under both aerobic and photoheterotrophic conditions. Three-dimensional reconstruction showed that MreB formed a ring at mid-cell. MreB remained at mid-cell as septation began but localized to new sites in the daughter cells before the completion of septation. MreB localized to putative septation sites in cephalexin-treated filamentous cells. Genomic single-copy mreB was replaced with gfp-mreB, and green fluorescent protein (GFP)-MreB localized in the same pattern, as seen with immunofluorescence microscopy. Some of the cells expressing GFP-MreB were abnormal, principally displaying an increase in cell width, suggesting that the fusion was not fully functional in all cells. GFP-MreB localized to swellings at mid-cell in cells treated with the penicillin-binding protein 2 inhibitor amdinocillin. These data suggest that MreB is essential in R. sphaeroides, performing a role at mid-cell in elongating cells, and in early septation, putatively in the cytoplasmic control of the peptidoglycan synthetic complexes.  相似文献   

6.
7.
Cysteine desulphurases are primary sources of sulphur that can eventually be used for Fe/S biogenesis or thiolation of various cofactors and tRNA. Escherichia coli contains three such enzymes, IscS, SufS and CsdA. The importance of IscS and SufS in Fe/S biogenesis is well established. The physiological role of CsdA in contrast remains uncertain. We provide here additional evidences for a functional redundancy between the three cysteine desulphurases in vivo. In particular, we show that a deficiency in isoprenoid biosynthesis is the unique cause of the lethality of the iscS sufS mutant. Moreover, we show that CsdA is engaged in two separate sulphur transfer pathways. In one pathway, CsdA interacts functionally with SufE–SufBCD proteins to assist Fe/S biogenesis. In another pathway, CsdA interacts with CsdE and a newly discovered protein, which we called CsdL, resembling E1‐like proteins found in ubiquitin‐like modification systems. We propose this new pathway to allow synthesis of an as yet to be discovered thiolated compound.  相似文献   

8.
atl is a gene encoding a bifunctional peptidoglycan hydrolase of Staphylococcus aureus. The gene product of atl is a 138 kDa protein that has an amidase domain and a glucosaminidase domain, and undergoes processing to generate two major peptidoglycan hydrolases, a 51 kDa glucosaminidase and a 62 kDa amidase in culture supernatant. An atl null mutant was isolated by allelic replacement and characterized. The mutant grew in clusters and sedimented when grown in broth culture. Analysis of peptidoglycan prepared from the wild type and the mutant revealed that there were no differences in muropeptide composition or in glycan chain length distribution. On the other hand, the atl mutation resulted in pleiotropic effects on cell surface nature. The mutant cells showed complete inhibition of metabolic turnover of cell wall peptidoglycan and revealed a rough outer cell wall surface. The mutation also decreased the amount of protein non-covalently bound to the cell surface and altered the protein profile, but did not affect proteins covalently associated with the cell wall. Lysis of growing cells treated with otherwise lytic concentration of penicillin G was completely inhibited in the mutant, but that of non-growing cells was not affected by the mutation. The atl mutation did not significantly affect the ability of S. aureus to provoke an acute infection when inoculated intraperitoneally in a mouse sepsis model. These results further support the supposition that atl gene products are involved in cell separation, cell wall turnover and penicillin-induced lysis of the cells.  相似文献   

9.
Two genes, LYS21 and LYS22, encoding isoforms of homocitrate synthase, an enzyme catalysing the first committed step in the lysine biosynthetic pathway, were disrupted in Candida albicans using the SAT1 flipper strategy. The double null lys21Δ/lys22Δ mutant lacked homocitrate synthase activity and exhibited lysine auxotrophy in minimal media that could be fully rescued by the addition of 0.5–0.6 mM l-lysine. On the other hand, its virulence in vivo in the model of disseminated murine candidiasis appeared identical to that of the mother, wild-type strain. These findings strongly question a possibility of exploitation of homocitrate synthase and possibly also other enzymes of the lysine biosynthetic pathway as targets in chemotherapy of disseminated fungal infections.  相似文献   

10.
In Rhodobacter sphaeroides, MreB, MreC, MreD, PBP2, and RodA are encoded at the same locus. The localizations of PBP2, MreB, and MreC, which have all been implicated in the synthesis of the peptidoglycan layer, were investigated under different growth conditions to gain insight into the relationships between these proteins. Immunofluorescence microscopy showed that PBP2 localized to specific sites at the midcell of elongating cells under both aerobic and photoheterotrophic conditions. Visualizing PBP2 at different stages of the cell cycle showed that in elongating cells, PBP2 was found predominately at the midcell, with asymmetric foci and bands across the cell. PBP2 remained at midcell until the start of septation, after which it moved to midcell of the daughter cells. Deconvolution and three-dimensional reconstructions suggested that PBP2 forms a partial ring at the midcell of newly divided cells and elongated cells, while in septating cells, partial PBP2 rings were present at one-quarter and three-quarter positions. Due to the diffraction limits of light microscopy, these partial rings could represent unresolved helices. Colocalization studies showed that MreC always colocalized with PBP2, while MreB colocalized with PBP2 only during elongation; during septation, MreB remained at the septation site, whereas PBP2 relocalized to the one-quarter and three-quarter positions. These results suggest that PBP2 and MreC are involved in peptidoglycan synthesis during elongation and that this occurs at specific sites close to midcell in R. sphaeroides.  相似文献   

11.
Bacillus licheniformis DnaK (BlDnaK) is predicted to consist of a 45-kDa N-terminal ATPase domain and a 25-kDa C-terminal substrate-binding domain. In this study, the full-length BlDnaK and its T86W and three C-terminally truncated mutants were constructed to evaluate the role of up to C-terminal 255 amino acids of the protein. The steady-state ATPase activity for BlDnaK, T86W, T86W/ΔC120, T86W/ΔC249, and T86W/ΔC255 was 65.68, 53.21, 116.04, 321.38, and 90.59 nmol Pi/min per mg, respectively. In vivo, BldnaK, T86W and T86W/ΔC120 genes allowed an E. coli dnaK756-ts mutant to grow at 44°C. Except for T86W/ΔC255, simultaneous addition of B. licheniformis DnaJ and GrpE, and NR-peptide synergistically stimulated the ATPase activity of BlDnaK, T86W, T86W/ΔC120, and T86W/ΔC249 by 16.9-, 13.9-, 33.9-, 9.9-fold, respectively. Measurement of intrinsic tryptophan fluorescence revealed significant alterations of microenvironment of aromatic amino acids in the C-terminally truncated mutants. The temperature-dependent signal in the far-UV region for T86W was consistent with that of BlDnaK, but the C-terminally truncated mutant proteins showed a higher sensitivity toward temperature-induced denaturation. These results suggest that C-terminal truncations alter the ATPase activity and thermal stability of BlDnaK and induce the conformation change of the ATPase domain. Wan-Chi Liang and Min-Guan Lin contributed equally to this work.  相似文献   

12.
The PhoP-PhoQ two-component system of Yersinia pseudotuberculosis, a Gram-negative enteric pathogen which causes a variety of gastrointestinal and extraintestinal infections in humans, has been shown to be necessary for virulence. A phoP-phoQ null mutant of a strain of Y. pseudotuberculosis cured of its native plasmid pYV was obtained and studied for generation of immune response in mouse model following intravenous inoculation. The phoP-phoQ null mutant elicited much weaker IgG antibody response to whole cell sonicated (WCS) antigen, in particular that of IgG2a isotype. Interferon-γ levels were also significantly reduced in cultured splenocytes of mice immunized with phoP-phoQ null mutant. The null mutant was found to be about 72-fold less virulent than the parent isogenic strain of Y. pseudotuberculosis. Average counts in spleen of mice inoculated with the null mutant were observed to reduce by at least four logs when compared with the counts in the spleen of mice inoculated with parent isogenic strain. We can thus suggest that the Th1-type immune response of the phoP-phoQ null mutant of Y. pseudotuberculosis is diminished in mice.  相似文献   

13.
The htpG null mutant was obtained by inserting a chloramphenicol resistance cassette (Cm r) in the htpG coding sequence. The htpG null mutant (htpG), hsp16.6, and the double mutant, htpG::hsp16.6 cells showed little growth disadvantage at 30°C and 37°C, but not at 40°C. This suggests that HtpG and HSP16.6 proteins do not have an essential role during growth at normal and mildly elevated temperatures. Cell growth, cell survival rate, and oxygen electrode measurements demonstrated that htpG, hsp16.6, and htpG::hsp16.6 cells were sensitive to heat stress. Decreased basal and acquired thermotolerance was observed when mutants were heat shocked, with htpG::hsp16.6 being the most sensitive. A comparison of mutants showed that hsp16.6 was more sensitive to heat shock than htpG. Received: 19 November 2002 / Accepted: 19 December 2002  相似文献   

14.
Plasmid pUC19-recAoc carrying a mutant allele of the recA gene, which plays the key role in the control of the SOS repair system and homologous recombinational repair, causes a 1.5-fold increase in radiation resistance of Escherichia coli ΔrecA cells, as compared to the wild-type recA + cells. The protective effect of this plasmid is drastically reduced in mutant lexA3 recAΔ21 deficient in the LexA protein and in induction of the SOS regulon. Plasmid pUC19-recAoc effectively suppresses UV sensitivity of the ΔrecA mutant. Mutation recAo20 allows constitutive high-level synthesis of the RecA protein. This mutation impairs the SOS box in the operator site of the recA gene and enhances heterology of the dimer LexA binding site. These data confirm that high level of the RecA protein synthesis per se is not sufficient for the expression of γ-inducible functions and that the derepression of lexA-dependent genes, other than recA gene, is necessary for the complete induction of the SOS repair system.  相似文献   

15.
Exponentially growing Escherichia coli cells containing additional copies of the shape-determining gene mreB were found to be elongated, whereas mreB mutant cells were spherical and overproduced penicillin-binding protein 3, a septum peptidoglycan synthetase. The effect of the mreB gene on expression of ftsI, the structural gene for penicillin-binding protein 3, was examined by using an ftsI-lacZ fusion gene on a plasmid. Formation of beta-galactosidase from the fusion gene was significantly increased in mreB129 mutant cells, and its overproduction was suppressed to a normal level by the presence of a plasmid containing the mreB gene. These results indicate a negative mechanism of control of cell division by this morphology gene and suggest that the gene functions in determining whether division or elongation of the cells occurs.  相似文献   

16.
We have analysed the YJR043c gene of Saccharomyces cerevisiae, previously identified by systematic sequencing. The deletion mutant (yjr043cΔ) shows slow growth at low temperature (15° C), while at 30° C and 37° C the growth rate of mutant cells is only moderately affected. At permissive and nonpermissive temperatures, mutant cells were larger and showed a high proportion of large-budded cells with a single duplicated nucleus at or beyond the bud neck and a short spindle. This phenotype was even more striking at low temperature, the mutant cells becoming dumbbell shaped. All these phenotypes suggest a role for YJR043C in cell cycle progression in G2/M phase. In two-hybrid assays, the YJR043c gene product specifically interacted with Poll, the catalytic subunit of DNA polymerase α. The pol1-1 /yjr043cΔ double mutant showed a more severe growth defect than the pol1-1 single mutant at permissive temperature. Centromeric plasmid loss rate elevated in yjr043cΔ. Analysis of the sequence upstream of the YJR043c ORF revealed the presence of an MluI motif (ACGCGT), a sequence associated with many genes involved in DNA replication in budding yeast. The cell cycle phenotype of the yjr043cΔ mutant, the evidence for genetic interaction with Pol1, the presence of an MluI motif upstream and the elevated rate of CEN plasmid loss in mutants all support a function for YJR043C in DNA replication. Received: 22 July 1998 / Accepted: 22 September 1998  相似文献   

17.
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.  相似文献   

18.
Escherichia coliDNA gyrase B subunit (GyrB) is composed of a 43-kDa N-terminal domain containing an ATP-binding site and a 47-kDa C-terminal domain involved in the interaction with the gyrase A subunit (GyrA). Site-directed mutagenesis was used to substitute, in both the entire GyrB subunit and its 43-kDa N-terminal fragment, the amino acid Y5 by either a serine (Y5S) or a phenylalanine residue (Y5F). Under standard conditions, cells bearing Y5S or Y5F mutant GyrB expression plasmids produced significantly less recombinant proteins than cells transformed with the wild-type plasmid. This dramatic decrease in expression of mutant GyrB proteins was not observed when the corresponding N-terminal 43-kDa mutant plasmids were used. Examination of the plasmid content of the transformed cells after induction showed that the Y5F and Y5S GyrB protein level was correlated with the plasmid copy number. By repressing tightly the promoter activity encoded by these expression vectors during cell growth, it was possible to restore the normal level of the mutant GyrB encoding plasmids in the transformed bacteria. Treatment with chloramphenicol before protein induction enabled large overexpression of the GyrB mutant Y5F and Y5S proteins. In addition, the decrease in plasmid copy number was also observed when the 47-kDa C-terminal fragment of the GyrB subunit was expressed in bacteria grown under standard culture conditions. Analysis of DNA supercoiling and relaxation activities in the presence of GyrA demonstrated that purified Y5-mutant GyrB proteins were deficient for ATP-dependent gyrase activities. Taken together, these results show that Y5F and Y5S mutant GyrB proteins, but not the corresponding 43-kDa N-terminal fragments, competein vivowith the bacterial endogenous GyrB subunit of DNA gyrase, thereby reducing the plasmid copy number in the transformed bacteria by probably acting on the level of negative DNA supercoilingin vivo.This competition could be mediated by the presence of the intact 47-kDa C-terminal domain in the Y5F and Y5S mutant GyrB subunits. This study demonstrates also that the amino acid Y5 is a crucial residue for the expression of the gyrase B activityin vivo.Thus, ourin vivoapproach may also be useful for detecting other important amino acids for DNA gyrase activity, as mutations affecting the ATPase activity or the GyrB/GyrB or GyrB/GyrA protein interactions.  相似文献   

19.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

20.
We have analysed the function of a gene of Bacillus subtilis , the product of which shows significant homology with eukaryotic SMC proteins essential for chromosome condensation and segregation. Two mutant strains were constructed; in one, the expression was under the control of the inducible spac promoter (conditional null) and, in the other, the gene was disrupted by insertion (disrupted null). Both could form colonies at 23°C but not at 37°C in the absence of the expression of the Smc protein, indicating that the B. subtilis smc gene was essential for cell growth at higher temperatures. Microscopic examination revealed the formation of anucleate and elongated cells and diffusion of nucleoids within the elongated cells in the disrupted null mutant grown at 23°C and in the conditional null mutant grown in low concentrations of IPTG at 37°C. In addition, immunofluorescence microscopy showed that subcellular localization of the Spo0J partition protein was irregular in the smc disrupted null mutant, compared with bipolar localization in wild-type cells. These results indicate that the B. subtilis smc gene is essential for chromosome partition. The role of B. subtilis Smc protein in chromosome partition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号