首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
模式识别受体(pattern recognition receptor,PRR)在先天免疫系统中起着至关重要的作用,是重要的宿主传感器,可识别入侵病原体所显示的病原体相关分子模式(pathogen-associated molecular pattern,PAMP)。PAMP是独立的免疫调节剂,且具有多种生化成分和特殊结构,逐渐被认为是许多现代疫苗的关键成分。Toll样受体(Toll-like receptor,TLR)3激动剂是一种合成的双链RNA(double-stranded RNA,dsRNA),能够以与病毒感染相似的模式激活宿主免疫防御的多种通路。当与抗原适当混合时,TLR3激动剂可以用作PAMP-佐剂,以调节和优化抗原特异性免疫应答。基于此,主要讨论了TLR3及其激动剂的作用机制以及TLR3激动剂在疫苗佐剂中的应用进展,以期为动物疫苗的研究提供新的思路。  相似文献   

2.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   

3.
The innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.  相似文献   

4.
Toll-like receptors (TLR) are among key receptors of the innate mammalian immune system. Receptors of this family are able to recognize specific highly conserved molecular regions (patterns) in pathogen structures, thus initiating reactions of both innate and acquired immune response finally resulting in the elimination of the pathogen. In this case every individual TLR type is able to bind a broad spectrum of molecules of microbial origin characterized by different chemical properties and structures. Recent data demonstrate the existence of a multistep mechanism of the TLR recognition of the pathogen in which, in addition to receptors proper, the involvement of different adapter molecules is necessary. However, functions of separate adapter molecules as well as the principles of formation of a multicomponent system of ligand-specific recognition are still not quite understandable. We describe all identified as well as possible (candidate) adapter TLR molecules by giving their brief characteristics, and we also propose generalized possible variants of the TLR ligand-specific recognition with involvement of adapter molecules.  相似文献   

5.
Role of toll-like receptors in tissue repair and tumorigenesis   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) play a critical role in host defense from microbial infection. TLRs recognize conserved molecular structures produced by microorganisms and induce activation of innate and adaptive immune responses. The inflammatory responses induced by TLRs play an important role TLRs not only in host defense from infection, but also in tissue repair and regeneration. This latter function of TLRs can also contribute to tumorigenesis. Here we review recent progress in understanding the role of TLRs in cancer development.  相似文献   

6.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants.  相似文献   

7.
8.
How Location Governs Toll-Like Receptor Signaling   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of innate immune system receptors responsible for recognizing conserved pathogen-associated molecular patterns (PAMPs). PAMP binding to TLRs initiates intracellular signaling pathways that lead to the upregulation of a variety of costimulatory molecules and the synthesis and secretion of various cytokines and interferons by cells of the innate immune system. TLR-induced innate immune responses are a prerequisite for the generation of most adaptive immune responses, and in the case of B cells, TLRs directly regulate signaling from the antigen-specific B-cell receptor. The outcome of TLR signaling is determined, in part, by the cells in which they are expressed and by the selective use of signaling adaptors. Recent studies suggest that, in addition, both the ligand recognition by TLRs and the functional outcome of ligand binding are governed by the subcellular location of the TLRs and their signaling adaptors. In this review we describe what is known about the intracellular trafficking and compartmentalization of TLRs in innate system's dendritic cells and macrophages and in adaptive system's B cells, highlighting how location regulates TLR function.  相似文献   

9.
Toll receptors in Drosophila melanogaster function in morphogenesis and host defense. Mammalian orthologues of Toll, the Toll-like receptors (TLRs), have been studied extensively for their essential functions in controlling innate and adaptive immune responses. We report that TLR8 is dynamically expressed during mouse brain development and localizes to neurons and axons. Agonist stimulation of TLR8 in cultured cortical neurons causes inhibition of neurite outgrowth and induces apoptosis in a dissociable manner. Our evidence indicates that such TLR8-mediated neuronal responses do not involve the canonical TLR-NF-kappaB signaling pathway. These findings reveal novel functions for TLR8 in the mammalian nervous system that are distinct from the classical role of TLRs in immunity.  相似文献   

10.
Recognition of pathogenic bacteria by mammalian hosts is largely mediated by membrane-bound Toll-like receptors (TLRs). Recently, a family of cytosolic proteins, termed NODs, with homology to plant disease-resistance gene products has been implicated in sensing microbes within the cytosol. The role of NOD family members in host defense is largely unknown. However, a recent report revealed that Nod1 is a crucial sensor for certain enteroinvasive bacteria that avoid TLR signaling. This finding suggests that Nod1 plays an important role in the initial recognition of pathogenic bacteria at epithelial surfaces, such as the gut, where innate immune responses to commensal bacteria must be avoided.  相似文献   

11.
The recognition of invading microbes followed by the induction of effective innate immune response is crucial for host survival. Human surface epithelial cells are situated at host-environment boundaries and thus act as the first line of host defense against invading microbes. They recognize the microbial ligands via Toll-like receptors (TLRs) expressed on the surface of epithelial cells. TLR2 has gained importance as a major receptor for a variety of microbial ligands. In contrast to its high expression in lymphoid tissues, TLR2 is expressed at low level in epithelial cells. Thus, it remains unclear whether the low amount of TLR2 expressed in epithelial cells is sufficient for mediating bacteria-induced host defense and immune response and whether TLR2 expression can be up-regulated by bacteria during infection. Here, we show that TLR2, although expressed at very low level in unstimulated human epithelial cells, is greatly up-regulated by nontypeable Hemophilus influenzae (NTHi), an important human bacterial pathogen causing otitis media and chronic obstructive pulmonary diseases. Activation of an IKKbeta-IkappaBalpha-dependent NF-kappaB pathway is required for TLR2 induction, whereas inhibition of the MKK3/6-p38alpha/beta pathway leads to enhancement of NTHi-induced TLR2 up-regulation. Surprisingly, glucocorticoids, well known potent anti-inflammatory agents, synergistically enhance NTHi-induced TLR2 up-regulation likely via a negative cross-talk with the p38 MAP kinase pathway. These studies may bring new insights into the role of bacteria and glucocorticoids in regulating host defense and immune response and lead to novel therapeutic strategies for modulating innate immune and inflammatory responses for otitis media and chronic obstructive pulmonary diseases.  相似文献   

12.
谢广成  段招军 《病毒学报》2012,28(3):303-310
入侵病毒的探知和适应性免疫应答启动均依靠固有免疫系统。三种模式识别受体(PRRs)在宿主防御系统第一线占据极其重要地位:Toll样受体、维甲酸诱导基因I样受体、核苷酸结合寡聚化结构域样受体。PRRs识别病原相关分子模式(PAMP)或危险信号分子模式(DAMPs)启动和调节固有免疫和适应性免疫应答。每种PRR都有单独的识别配体和细胞定位。激活的PRRs将信号分子传递给其配体分子(MyD88,TRIF,IRAK,IPS-1),配体活化后作为信使激活信号途径下游激酶(IKK复合物,MAPKs,TBK1,RIP-1)和转录因子(NF-κB,AP-1,IRF3),最终产生细胞因子、趋化因子、促炎细胞因子和I型干扰素。本文重点讨论PRRs信号通路及该领域取得的成果,以期为人类健康和免疫疾病防治提供策略。  相似文献   

13.
Innate immunity provides the first line of defense against invading pathogens and is essential for survival in the absence of adaptive immune responses. Innate immune recognition relies on a limited number of germ-line encoded receptors, such as Toll-like receptors (TLRs), that evolved to recognize conserved molecular patterns of microbial origin. To date, ten transmembrane proteins in the TLR family have been described. It is becoming increasingly clear that bacterial CpG DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG are potent inducers of the innate immune system including dendritic cells (DCs), macrophages, and natural killer (NK) and NKT cells. Recent studies indicate that mucosal or systemic delivery of CpG DNA can act as a potent adjuvant in a vaccine combination or act alone as an anti-microbial agent. Recently, it was shown that TLR9 is essential for the recognition of unmethylated CpG DNA since cells from TLR9-deficient mice are unresponsive to CpG stimulation. Although the effects of CpG DNA on bone marrow-derived cells are beginning to unfold, there has been little or no information regarding the mechanisms of CpG DNA function on non-immune cells or tissues. This review focuses on the recent advances in CpG-DNA/TLR9 signaling effects on the activation of innate immunity.  相似文献   

14.
Toll样受体(Toll-like receptors, TLRs)在先天免疫系统中广泛表达,可通过促进抗原提呈细胞(antigen presenting cells,APC)共刺激分子的表达从而间接导致T细胞活化。然而研究发现,TLR也可在T细胞中表达,并可在没有APC的情况下直接调节T细胞的代谢与功能。本文综述了TLR信号对不同T细胞亚群代谢和免疫功能的直接调控作用,为T细胞介导的癌症及自身免疫病等疾病的预防和治疗提供了新的思路。  相似文献   

15.
Toll-like receptors and innate immunity   总被引:5,自引:0,他引:5  
Toll-like receptors (TLRs) are evolutionarily conserved innate receptors expressed in various immune and non-immune cells of the mammalian host. TLRs play a crucial role in defending against pathogenic microbial infection through the induction of inflammatory cytokines and type I interferons. Furthermore, TLRs also play roles in shaping pathogen-specific humoral and cellular adaptive immune responses. In this review, we describe the recent advances in pathogen recognition by TLRs and TLR signaling.  相似文献   

16.
Toll-like receptors and corneal innate immunity   总被引:1,自引:0,他引:1  
The ocular surface is constantly exposed to a wide array of microorganisms. The ability of the cornea to recognize pathogens as foreign and eliminate them is critical to retain its transparency, hence preservation of sight. In the eye, as in other parts of the body, the early response against invading pathogens is provided by innate immunity. Corneal innate immune system uses a series of pattern recognition receptors to detect the presence of pathogens thus allowing for rapid host defense responses to invading microbes. A key component of such receptors is the "Toll-like receptors" (TLRs), which have come to occupy the center stage in innate immunity against invading pathogens. An increasing number of studies have shown that TLRs are expressed by a variety of tissues and cells of the eye and play an important role in ocular defense against microbial infection. Here in this review we summarize the current knowledge about TLR expression in human eye with main emphasis on the cornea, and discuss the future directions of the field.  相似文献   

17.
Toll-like receptors (TLR) are crucial pattern recognition receptors in innate immunity. The importance of TLR2 in host defense against Gram-positive bacteria has been suggested by the fact that this receptor recognizes major Gram-positive cell wall components, such as peptidoglycan and lipoteichoic acid. To determine the role of TLR2 in pulmonary Gram-positive infection, we first established that TLR2 is indispensable for alveolar macrophage responsiveness toward Streptococcus pneumoniae. Nonetheless, TLR2 gene-deficient mice intranasally inoculated with S. pneumoniae at doses varying from nonlethal (with complete clearance of the infection) to lethal displayed only a modestly reduced inflammatory response in their lungs and an unaltered antibacterial defense when compared with normal wild-type mice. These data suggest that TLR2 plays a limited role in the innate immune response to pneumococcal pneumonia, and that additional pattern recognition receptors likely are involved in host defense against this common respiratory pathogen.  相似文献   

18.
While adaptive immunity genes evolve rapidly under the influence of positive selection, innate immune system genes are known to evolve slowly due to strong purifying selection. Among the sensors of the innate immune system, Toll-like receptors (TLRs) are particularly important due to their ability to recognize and respond to pathogen-associated molecular patterns (PAMP), such as lipopolysaccharides, peptidoglycans, and nucleic acids from bacteria or viruses. In the present study, we examine the evolutionary process that has operated on the TLR7 family genes TLR7, TLR8, and TLR9. The results demonstrate that the average Ka/Ks (the ratio between nonsynonymous and synonymous substitution rates) of each TLR family gene is far lower than one regardless of estimating methods, supporting previous observations of strong purifying selection in this gene family. Interestingly, however, analysis of Ka/Ks ratios along the coding regions of TLR7 family genes by sliding-window analysis reveals a few narrow high peaks (Ka/Ks > 1). The most prominent peak corresponds to a specific region in the ectodomain, which exists only in the TLR7 family, suggesting that this unique structure of the TLR7 family might have been a target of positive selection in a variety of lineages. Furthermore, maximum likelihood model tests suggest that positive selection is the best explanation for a certain fraction of the amino acid substitutions in the TLR9.  相似文献   

19.
Recognition of pathogens by the innate immune system is mediated by pattern recognition receptors (PRRs), which recognize specific molecular structures of the infectious agents and subsequently trigger expression of genes involved in host defense. Toll-like receptors (TLRs) represent a well-characterized class of membrane-bound PRRs, and the RNA helicase retinoic acid inducible gene I (RIG-I) has recently been described as a novel cytoplasmic PRR recognizing double-stranded RNA (dsRNA). Here we show that activation of signal transduction and induction of cytokine expression by the paramyxovirus Sendai virus is dependent on virus replication and involves PRRs in a cell-type-dependent manner. While nonimmune cells relied entirely on recognition of dsRNA through RIG-I for activation of an antiviral response, myeloid cells utilized both the single-stranded RNA sensing TLR7 and TLR8 and dsRNA-dependent mechanisms independent of RIG-I, TLR3, and dsRNA-activated protein kinase R to trigger this response. Therefore, there appears to be a large degree of cell-type specificity in the mechanisms used by the host to recognize infecting viruses.  相似文献   

20.
TLR9(Toll-likereceptor9)是一种微生物病原相关分子结构模式识别受体,TLR9能够识别CpG—ODN(胞嘧啶磷酸鸟甘-寡聚脱氧核苷酸),使病原相关受体在先天性免疫细胞上表达,并激活下游炎性通路。研究表明,TLR9在先天性免疫反应中产生了重要作用,如脓毒血症、自身免疫性疾病、刀豆体球蛋白A介导肝炎性肝脏损伤、炎性泡沫细胞形成、缺血再灌注损伤等,并且与多种致病因子相关联,如肝x受体、甲酰多肽受体、线粒体DNA等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号