首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Proteolytic activation of the protective antigen (PA) component of anthrax toxin allows it to self-associate into a ring-shaped homoheptamer, [PA(63)](7), which can bind the enzymatic components lethal factor (LF) and edema factor (EF). [PA(63)](7) is a pore-precursor (prepore), and under the low-pH conditions of the endosome, it forms a transmembrane pore that allows LF and EF to enter the cytosol. PA was labeled with donor and acceptor fluorescent dyes, and F?rster resonance energy transfer was used to measure the assembly and disassembly kinetics of the prepore complex in solution. The dissociation rate constant for [PA(63)](7) was 1 x 10(-)(6) s(-)(1) (t(1/2) approximately 7 days). In contrast, a ternary complex containing the PA-binding domain of LF (LF(N)) bound to a PA(63) dimer composed of two nonoligomerizing mutants dissociated rapidly (t(1/2) approximately 1 min). Thus, the substantial decrease in the rate of disassembly of [PA(63)](7) relative to the ternary complex is due to the cooperative interactions among neighboring subunits in the heptameric ring. Low concentrations of LF(N) promoted assembly of the prepore from proteolytically activated PA, whereas high concentrations inhibited assembly of both the prepore and the ternary complex. A self-assembly scheme of anthrax toxin complexes is proposed.  相似文献   

2.
Anthrax lethal toxin is a binary bacterial toxin consisting of two proteins, protective antigen (PA) and lethal factor (LF), that self-assemble on receptor-bearing eukaryotic cells to form toxic, non-covalent complexes. PA63, a proteolytically activated form of PA, spontaneously oligomerizes to form ring-shaped heptamers that bind LF and translocate it into the cell. Site-directed mutagenesis was used to substitute cysteine for each of three residues (N209, E614 and E733) at various levels on the lateral face of the PA63 heptamer and for one residue (E126) on LFN, the 30 kDa N-terminal PA binding domain of LF. Cysteine residues in PA were labeled with IAEDANS and that in LFN was labeled with Alexa 488 maleimide. The mutagenesis and labeling did not significantly affect function. Time-resolved fluorescence methods were used to study fluorescence resonance energy transfer (FRET) between the AEDANS and Alexa 488 probes after the complex assembled in solution. The results clearly indicate energy transfer between AEDANS labeled at residue N209C on PA and the Alexa 488-labeled LFN, whereas transfer from residue E614C on PA was slight, and none was observed from residue E733C. These results support a model in which LFN binds near the top of the ring-shaped (PA63)7 heptamer.  相似文献   

3.
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.  相似文献   

4.
Anthrax toxin consists of three components: the enzymatic moieties edema factor (EF) and the lethal factor (LF) and the receptor-binding moiety protective antigen (PA). These toxin components are released from Bacillus anthracis as unassociated proteins and form complexes on the surface of host cells after proteolytic processing of PA into PA20 and PA63. The sequential order of PA heptamerization and ligand binding, as well as the exact mechanism of anthrax toxin entry into cells, are still unclear. In the present study, we provide direct evidence that PA63 monomers are sufficient for binding to the full length LF or its LF-N domain, though with lower affinity with the latter. Therefore, PA oligomerization is not a necessary condition for LF/PA complex formation. In addition, we demonstrated that the PA20 directly interacts with the LF-N domain. Our data points to an alternative process of self-assembly of anthrax toxin on the surface of host cells.  相似文献   

5.
Anthrax toxin consists of three different molecules: the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63 kDa C-terminal part of PA, PA(63), forms heptameric channels that insert in endosomal membranes at low pH, necessary to translocate EF and LF into the cytosol of target cells. In many studies, about 30 kDa N-terminal fragments of the enzymatic components EF (254 amino acids) and LF (268 amino acids) were used to study their interaction with PA(63)-channels. Here, in experiments with artificial lipid bilayer membranes, EF(N) and LF(N) show block of PA(63)-channels in a dose, voltage and ionic strength dependent way with high affinity. However, when compared to their full-length counterparts EF and LF, they exhibit considerably lower binding affinity. Decreasing ionic strength and, in the case of EF(N), increasing transmembrane voltage at the cis side of the membranes, resulted in a strong decrease of half saturation constants. Our results demonstrate similarities but also remarkable differences between the binding kinetics of both truncated and full-length effectors to the PA(63)-channel.  相似文献   

6.
Elliott JL  Mogridge J  Collier RJ 《Biochemistry》2000,39(22):6706-6713
Bacillus anthracis secretes three proteins, which associate in binary combinations to form toxic complexes at the surface of mammalian cells. Receptor-bound protective antigen (PA) is proteolytically activated, yielding a 63 kDa fragment (PA(63)). PA(63) oligomerizes into heptamers, which bind edema factor (EF) or lethal factor (LF) to form the toxic complexes. We undertook a quantitative analysis of the interactions of EF with PA(63) by means of surface plasmon resonance (SPR) measurements. Heptameric PA(63) was covalently bound by amine coupling to an SPR chip, or noncovalently bound via a C-terminal hexahistidine tag on the protein to Ni(2+)nitrilotriacetate groups on the chip. Values of k(on) and k(off) for EF at 23 degrees C were approximately 3 x 10(5) M(-)(1) s(-)(1) and (3-5) x 10(-)(4) s(-)(1), respectively, giving a calculated K(d) of (1-2) x 10(-)(9) M. A similar value of K(d) (7 x 10(-)(10) M) was obtained when we measured the binding of radiolabeled EF to receptor-bound PA(63) on the surface of L6 cells (at 4 degrees C). Each of these analyses was also performed with LF and LF(N) (the N-terminal 255 residues of LF), and values obtained were comparable to those for EF. The similarity in the dissociation constants determined by SPR and by measurements on the cell surface suggests that the presence of the receptor does not play a large role in the interaction between PA(63) and EF/LF.  相似文献   

7.
Anthrax toxin is an A/B bacterial protein toxin which is composed of the enzymatically active Lethal Factor (LF) and/or Oedema Factor (EF) bound to Protective Antigen 63 (PA63) which functions as both the receptor binding and transmembrane domains. Once the toxin binds to its cell surface receptors it is internalized into the cell and traffics through Rab5- and Rab7-associated endosomal vesicles. Following acidification of the vesicle lumen, PA63 undergoes a dynamic change forming a beta-barrel that inserts into and forms a pore through the endosomal membrane. It is widely recognized that LF, and the related fusion protein LFnDTA, must be completely denatured in order to transit through the PA63 formed pore and enter the eukaryotic cell cytosol. We demonstrate by protease protection assays that the molecular chaperone GRP78 mediates the unfolding of LFnDTA and LF at neutral pH and thereby converts these proteins from a trypsin resistant to sensitive conformation. We have used immunoelectron microscopy and gold-labelled antibodies to demonstrate that both GRP78 and GRP94 chaperones are present in the lumen of endosomal vesicles. Finally, we have used siRNA to demonstrate that knock-down of GRP78 results in the emergence of resistance to anthrax lethal toxin and oedema toxin action.  相似文献   

8.
Anthrax toxin (AT), secreted by Bacillus anthracis, is a three-protein cocktail of lethal factor (LF, 90 kDa), edema factor (EF, 89 kDa), and the protective antigen (PA, 83 kDa). Steps in anthrax toxicity involve (1) binding of ligand (EF/LF) to a heptamer of PA63 (PA63h) generated after N-terminal proteolytic cleavage of PA and, (2) following endocytosis of the complex, translocation of the ligand into the cytosol by an as yet unknown mechanism. The PA63h.LF complex was directly visualized from analysis of images of specimens suspended in vitrified buffer by cryo-electron microscopy, which revealed that the LF molecule, localized to the nonmembrane-interacting face of the oligomer, interacts with four successive PA63 monomers and partially unravels the heptamer, thereby widening the central lumen. The observed structural reorganization in PA63h likely facilitates the passage of the large 90 kDa LF molecule through the lumen en route to its eventual delivery across the membrane bilayer.  相似文献   

9.
Anthrax toxin complex consists of three different molecules, the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63-kDa N-terminal part of PA, PA(63), forms a heptameric channel that inserts at low pH in endosomal membranes and that is necessary to translocate EF and LF in the cytosol of the target cells. EF is an intracellular active enzyme, which is a calmodulin-dependent adenylate cyclase (89 kDa) that causes a dramatic increase of intracellular cAMP level. Here, the binding of full-length EF on heptameric PA(63) channels was studied in experiments with artificial lipid bilayer membranes. Full-length EF blocks the PA(63) channels in a dose, temperature, voltage, and ionic strength-dependent way with half-saturation constants in the nanomolar concentration range. EF only blocked the PA(63) channels when PA(63) and EF were added to the same side of the membrane, the cis side. Decreasing ionic strength and increasing transmembrane voltage at the cis side of the membranes resulted in a strong decrease of the half-saturation constant for EF binding. This result suggests that ion-ion interactions are involved in EF binding to the PA heptamer. Increasing temperature resulted in increasing half-saturation constants for EF binding to the PA(63) channels. The binding characteristics of EF to the PA(63) channels are compared with those of LF binding. The comparison exhibits similarities but also remarkable differences between the bindings of both toxins to the PA(63) channel.  相似文献   

10.
Anthrax protective antigen (PA, 83 kDa), a pore-forming protein, upon protease activation to 63 kDa (PA(63)), translocates lethal factor (LF) and edema factor (EF) from endosomes into the cytosol of the cell. The relatively small size of the heptameric PA(63) pore (approximately 12 angstroms) raises questions as to how large molecules such as LF and EF can move through the pore. In addition, the reported high binding affinity between PA and EF/LF suggests that EF/LF may not dissociate but remain complexed with activated PA(63). In this study, we found that purified (PA(63))(7)-LF complex exhibited biological and functional activities similar to the free LF. Purified LF complexed with PA(63) heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage cells. Electrophysiological studies of the complex showed strong rectification of the ionic current at positive voltages, an effect similar to that observed if LF is added to the channels formed by heptameric PA(63) pore. Complexes of (PA(63))(7)-LF found in the plasma of infected animals showed functional activity. Identifying active complex in the blood of infected animals has important implications for therapeutic design, especially those directed against PA and LF. Our studies suggest that the individual toxin components and the complex must be considered as critical targets for anthrax therapeutics.  相似文献   

11.
The anthrax toxin complex consists of three different molecules, protective antigen (PA), lethal factor (LF), and edema factor (EF). The activated form of PA, PA(63), forms heptamers that insert at low pH in biological membranes forming ion channels and that are necessary to translocate EF and LF in the cell cytosol. LF and EF are intracellular active enzymes that inhibit the host immune system promoting bacterial outgrowth. Here, PA(63) was reconstituted into artificial lipid bilayer membranes and formed ion-permeable channels. The heptameric PA(63) channel contains a binding site for LF on the cis side of the channel. Full-size LF was found to block the PA(63) channel in a dose- and ionic-strength-dependent way with half-saturation constants in the nanomolar concentration range. The binding curves suggest a 1:1 relationship between (PA(63))(7) and bound LF that blocks the channel. The presence of a His(6) tag at the N-terminal end of LF strongly increases the affinity of LF toward the PA(63) channel, indicating that the interaction between LF and the PA(63) channel occurs at the N terminus of the enzyme. The LF-mediated block of the PA(63)-induced membrane conductance is highly asymmetric with respect to the sign of the applied transmembrane potential. The result suggested that the PA(63) heptamers contain a high-affinity binding site for LF inside domain 1 or the channel vestibule and that the binding is ionic-strength-dependent.  相似文献   

12.
Anthrax toxin consists of three different molecules: the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63 kDa C-terminal part of PA, PA63, forms heptameric channels that insert in endosomal membranes at low pH, necessary to translocate EF and LF into the cytosol of target cells. In many studies, about 30 kDa N-terminal fragments of the enzymatic components EF (254 amino acids) and LF (268 amino acids) were used to study their interaction with PA63-channels. Here, in experiments with artificial lipid bilayer membranes, EFN and LFN show block of PA63-channels in a dose, voltage and ionic strength dependent way with high affinity. However, when compared to their full-length counterparts EF and LF, they exhibit considerably lower binding affinity. Decreasing ionic strength and, in the case of EFN, increasing transmembrane voltage at the cis side of the membranes, resulted in a strong decrease of half saturation constants. Our results demonstrate similarities but also remarkable differences between the binding kinetics of both truncated and full-length effectors to the PA63-channel.  相似文献   

13.
The action of anthrax toxin begins when the protective antigen (PA(83), 83 kDa) moiety binds to a mammalian cell-surface receptor and is cleaved by a furin-family protease into two fragments: PA(20) (20 kDa) and PA(63) (63 kDa). After PA(20) dissociates, receptor-bound PA(63) spontaneously oligomerizes to form a heptameric species, which is able to bind the two enzymatic components of the toxin and transport them to the cytosol. Treatment of PA(83) with trypsin yielded PA(63) and a form of PA(20) lacking unstructured regions at the N- and C-termini. We labeled these fragments with dyes capable of fluorescence resonance energy transfer to quantify their association in solution. We kinetically determined that the equilibrium dissociation constant is 190 nM with a dissociation rate constant, k(off), of 3.3 x 10(-)(2) s(-)(1) (t(1/2) of 21 s). A two-step association process was observed using stopped-flow: a fast bimolecular step (k(on) = 1.4 x 10(5) M(-)(1) s(-)(1)) was followed by a slower unimolecular step (k = 3.5 x 10(-)(3) s(-)(1)) with an equilibrium isomerization constant, K(iso), of 2.1. The two-step mechanism most consistent with the data is one in which the dissociation of the PA(20).PA(63) complex is followed by an isomerization in the PA(63) moiety. Our results indicate that, following the cleavage of PA on the cell surface, PA(20) is largely dissociated within a minute. A slow isomerization step in PA(63) may then potentiate it for oligomerization and subsequent steps in toxin action.  相似文献   

14.
Anthrax toxin is a complex of protective antigen (PA, 735 aa), lethal factor (LF, 776 aa), and edema factor (EF, 767 aa). PA binds to cell surface receptors and is cleaved by cell surface proteases into PA63, while LF and EF compete for binding to PA63. The PA63-LF/EF complex is internalized into the cytosol and causes different pathogenic responses in animals and cultured cells. 1-300 amino acid residues of LF have been viewed as the region responsible for the high affinity binding of LF to PA. Amino acid analysis of LF and EF revealed a common stretch of 7 amino acids (147VYYEIGK153). In the present study, each amino acid of this stretch was replaced by alanine at a time. Y148A, Y149A, I151A, and K153A mutants were found to be deficient in their ability to lyse J774A.1 cells and their binding ability to PA63 was drastically reduced. We propose that these four amino acids play a crucial role in the process of binding of LF to PA63.  相似文献   

15.
Anthrax toxin consists of protective antigen (PA), and lethal (LF) and edema (EF) factors. A 83 kDa PA monomer (PA83) precursor binds to the cell receptor. Furin-like proprotein convertases (PCs) cleave PA83 to generate cell-bound 63 kDa protein (PA63). PA63 oligomerizes to form a ring-shaped heptamer that binds LF-EF and facilitates their entry into the cells. Several additional PCs, as opposed to furin alone, are capable of processing PA83. Following the incomplete processing of the available pool of PA83, the functional heptamer includes both PA83 and PA63. The available structures of the receptor-PA complex imply that the presence of either one or two molecules of PA83 will not impose structural limitations on the formation of the heptamer and the association of either the (PA83)(1)(PA63)(6) or (PA83)(2)(PA63)(5) heteroheptamer with LF-EF. Our data point to the intriguing mechanism of anthrax that appears to facilitate entry of the toxin into the cells which express limiting amounts of PCs and an incompletely processed PA83 pool.  相似文献   

16.
A panel of Fabs that neutralize anthrax toxin in vitro was selected from libraries generated from human donors vaccinated against anthrax. At least two of these antibodies protect rats from anthrax intoxication in vivo. Fabs 83K7C and 63L1D bind with subnanomolar affinity to protective antigen (PA) 63, and Fab 63L1D neutralizes toxin substoichiometrically, inhibits lethal factor (LF) interaction with PA63 and binds to a conformational epitope formed by PA63.  相似文献   

17.
The anthrax toxin consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA mediates the entry of LF and EF to the cytosol where they exert their effects. Although PA is the major component of the vaccines against anthrax, LF has also been found to play an important role in enhancing protective immunity. We have developed an osmolyte-inducible LF expression system. The protein expression system contributed no additional amino acids to the recombinant LF making it suitable for the human vaccine trials.  相似文献   

18.
PA63, a proteolytically activated 63-kDa form of anthrax protective antigen (PA), forms heptameric oligomers and has the ability to bind and translocate the catalytic moieties, lethal factor (LF), and edema factor (EF) into the cytosol of mammalian cells. Acidic pH triggers oligomerization and membrane insertion by PA63. A disordered amphipathic loop in domain II of PA (2beta2-2beta3 loop) is involved in membrane insertion by PA63. Because conditions required for membrane insertion coincide with those for oligomerization of PA63 in mammalian cells, residues constituting the 2beta2-2beta3 loop were replaced with the residues of the amphipathic membrane-inserting loop of its homologue iota-b toxin secreted by Clostridium perfringens. It was hypothesized that such a molecule might assemble into hetero-heptameric structures with wild-type PA ultimately leading to the inhibition of cellular intoxication. The mutation blocked the ability of PA to mediate membrane insertion and translocation of LF into the cytosol but had no effect on proteolytic activation, oligomerization, or binding LF. Moreover, an equimolar mixture of purified mutant PA (PA-I) and wild-type PA showed complete inhibition of toxin activity both in vitro on J774A.1 cells and in vivo in Fischer 344 rats thereby exhibiting a dominant negative effect. In addition, PA-I inhibited the channel-forming ability of wild-type PA on the plasma membrane of CHO-K1 cells thereby indicating protein-protein interactions between the two proteins resulting in the formation of mixed oligomers with defective functional activity. Our findings provide a basis for understanding the mechanism of translocation and exploring the possibility of the use of this PA molecule as a therapeutic agent against anthrax toxin action in vivo.  相似文献   

19.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

20.
The protective antigen (PA) component of anthrax toxin translocates the catalytic moieties lethal factor (LF) and edema factor (EF) into the cytosol. The proteolytically activated 63 kDa form of PA (PA63) has the ability to oligomerize and bind LF/EF. PA has four distinct domains performing specialized functions; whereas the function of domains I, II and IV has been well characterized, domain III has no known role in the biological activity of PA. Here we report the role of amino acid residues lining an exposed hydrophobic patch of domain III in the biological activity of PA. The residues Phe552, Phe554, lIe562, Leu566 and lle574 were individually substituted with alanine and the effect was studied. All mutant PA proteins except Phe552Ala were equally active as wild-type PA in exhibiting a toxic phenotype to J774A.1 cells in the presence of LF. Substitution of Ala for Phe552 reduced the ability of PA to intoxicate cells by more than 250-fold. However, Phe552Ala was equally active in receptor binding and susceptibility to trypsin and chymotrypsin as wild-type PA, the activities that have been shown to be essential for the biological activity of PA. This mutated PA protein had a decreased ability to bind LF, oligomerize on cells and to induce release of 86Rb+ from Chinese hamster ovary cells. These results suggest that the residue Phe552 in PA plays an important role in LF binding and oligomerization. Our study provides a basis for further exploration of the biological significance of domain III of PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号