首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C R Cremo  R G Yount 《Biochemistry》1987,26(23):7524-7534
Two new fluorescent nucleotide photoaffinity labels, 3'(2')-O-(4-benzoylbenzoyl)-1,N6-ethenoadenosine 5'-diphosphate (Bz2 epsilon ADP) and 2'-deoxy-3'-O-(4-benzoylbenzoyl)-1,N6-ethenoadenosine 5'-diphosphate [3'(Bz2)2'd epsilon ADP], have been synthesized and used as probes of the ATP binding site of myosin subfragment 1 (SF1). These analogues are stably trapped by the bifunctional thiol cross-linker N,N'-p-phenylenedimaleimide (pPDM) at the active site in a manner similar to that of ATP [Wells, J.A., & Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970], and nonspecific photolabeling can be minimized by removing free probe by gel filtration prior to irradiation. Both probes covalently photoincorporate with high efficiency (40-50%) into the central 50-kDa heavy chain tryptic peptide, as found previously for the nonfluorescent parent compound 3'(2')-O-(4-benzoylbenzoyl)adenosine diphosphate [Mahmood, R., & Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959]. The solution conformations of Bz2 epsilon ADP and 3'(Bz2)-2'd epsilon ADP were analyzed by steady-state and time-resolved fluorescence spectroscopy. These data indicated that the benzoylbenzoyl rings in both analogues were stacked over the epsilon-adenine ring. The degree of stacking was greater with the 2' isomer than with the 3' isomer. Fluorescence quantum yields and lifetimes were measured for Bz2 epsilon ADP and 3'(Bz2)2'd epsilon ADP reversibly bound, stably trapped, and covalently photoincorporated at the active site of SF1. These values were compared with those for 3'(2')-O-[[(phenylhydroxymethyl)phenyl]carbonyl]-1,N6-ethenoadenos ine diphosphate (CBH epsilon ADP) and 2'-deoxy-3'-O-[[(phenylhydroxymethyl)phenyl]carbonyl]-1,N6- ethenoadenosine diphosphate [3'(CBH)2'd epsilon ADP]. These derivatives were synthesized as fluorescent analogues of the expected product of the photochemical reactions of Bz2 epsilon ADP and 3'(Bz2)2'd epsilon ADP, respectively, with the active site of SF1. The fluorescence properties of the carboxybenzhydrol derivatives trapped at the active site by pPDM were compared with those of the Bz2 nucleotide-SF1 complexes. These properties were consistent with a photoincorporation mechanism in which the carbonyl of benzophenone was converted to a tertiary alcohol attached covalently to the protein. The specific, highly efficient photoincorporation of Bz2 epsilon ADP at the active site will allow it to be used as a donor in distance measurements by fluorescence resonance energy transfer to acceptor sites on actin.  相似文献   

2.
The photoprobe 3'(2')-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (Bz2ATP) was used to characterize the nucleotide-binding site of myosin subfragment 1 (SF1). Improved synthesis and purification of Bz2ATP are reported. 1H NMR and ultraviolet spectroscopy show that Bz2ATP is a 60:40 mixture of the 3'(2')-ribose isomers and that the epsilon M261 is 41,000 M-1 cm-1. Bz2ATP is hydrolyzed by SF1 comparably to ATP in the presence of actin or K+, NH4+, or Mg2+ ions; and the product, Bz2ADP, has a single binding site on SF1 (K'a = 3.0 X 10(5) M-1). [3H]Bz2ATP was photoincorporated into SF1 with concomitant loss of K+-EDTA-ATPase activity. Analysis of photolabeled SF1 showed that the three major tryptic peptides (23, 50, and 20 kDa) of the heavy chain fragment and the alkali light chains were labeled. The presence of ATP during irradiation protected only the 50-kDa peptide, indicating that the other peptides were nonspecifically labeled. If Bz2ATP was first trapped on SF1 by cross-linking the reactive thiols, SH1 and SH2, with p-phenylenedimaleimide, only the 50-kDa tryptic peptide was labeled. These results confirm and extend previous observations that [3H]Bz2ATP trapped on SF1 by cobalt(III) phenanthroline photolabeled the same 50-kDa peptide (Mahmood, R., and Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959). Thus, the 50-kDa peptide is labeled with or without thiol cross-linking, indicating that the relative position of SH1 and SH2 does not affect the labeling pattern.  相似文献   

3.
A facile and high-yield synthesis of a new ATP analogue, 2-[(4-azido-2-nitrophenyl)amino]ethyl triphosphate (NANTP), is described. NANTP and ATP are hydrolyzed by skeletal myosin subfragment 1 (SF1) at comparable rates in the presence of Ca2+, Mg2+, or NH4+-EDTA. NANTP is also cleaved but less readily by mitochondrial F1-ATPase and by (Na+ + K+)-ATPase from dog brain and hog kidney. F-Actin markedly activates NANTP cleavage by SF1 in the presence of Mg2+, suggesting that the diphosphate product NANDP is slow to be released from the enzyme. [alpha-32P]NANDP binds to a single site on SF1 (KA = 1 X 10(6) M-1) with an affinity identical with that of ADP. The absorption maximum of NANDP was shifted from 474 to 467 nm upon binding to SF1, suggesting that the purine binding site has a dielectric constant of about 45. NANDP was trapped in nearly stoichiometric amounts at the active site by cross-linking SH1 and SH2 with N,N'-p-phenylenedimaleimide (pPDM) or by chelation with cobalt (III) phenanthroline [Wells, J., & Yount, R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966]. The trapped [beta-32P]NANDP X SF1 complex, like the comparable ADP X SF1 complex, was stable for days at 0 degree C and could be purified free of extraneous analogue by ammonium sulfate precipitation and gel filtration. Photolysis of the purified complex gave greater than 50% covalent incorporation of the trapped NANDP into the 95-kilodalton (kDa) heavy chain of SF1. Limited trypsinization and analysis by gel electrophoresis showed that greater than 95% of the bound label was associated with the 25-kDa NH2-terminal peptide. Without trapping, NANDP labeling of SF1 was nonspecific and was not prevented by addition of a large excess of ATP. This new approach of trapping photoaffinity analogues by cross-linking agents before photolysis may prove to be of general usefulness in increasing the specificity and extent of labeling of enzymes that undergo substrate-induced conformation changes.  相似文献   

4.
Recent experiments [Wells, J., & Yount, R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966] have shown it is possible to trap MgADP and other nucleotides stably at the active site of myosin by cross-linking two thiol groups. A variety of cross-linking reagents including chelation of the two thiols by cobalt (III) phenanthroline or covalent reaction with N,N'-p-phenylenedimaleimide (pPDM) are effective trapping agents. No trapping of nucleotides occurs in the absence of divalent metals. Thus far Mg2+, Mn2+, Co2+, Ni2+, and Ca2+ but not Zn2+ all function to promote trapping of the 1:1 divalent metal-ADP complex and to enhance the rate of ATPase inactivation. Substitution-inert Cr(III) complexes of ADP, ATP, or pyrophosphate that bind very weakly or not at all to the active site are not trapped by cross-linking. While the stability of the trapped divalent metals varies, e.g., t1/2 of 0.5-7 days at 0 degree C, they are stable enough to permit accurate spectral measurements of the Mn2+ and Co2+ trapped complexes. Electron paramagnetic resonance (EPR) measurements of Mn2+ bound to 5'-adenylyl imidodiphosphate or complexed to myosin chymotryptic subfragment 1 indicate that the metal is bound at the active site. Circular dichroism (CD) and visible absorption studies of the Co2+ . ADP trapped complex indicate the metal ion is in an asymmetric octahedral environment. EPR and CD measurements show that the environment of the metal nucleotide is the same whether bound reversibly or stably trapped at the active site.  相似文献   

5.
Atomic structures of scallop myosin subfragment 1(S1) with the bound MgADP, MgAMPPNP, and MgADP.BeF(x) provide crystallographic evidence for a destabilization of the helix containing reactive thiols SH1 (Cys703) and SH2 (Cys693). A destabilization of this helix was not observed in previous structures of S1 (from chicken skeletal, Dictyostelium discoideum, and smooth muscle myosins), including complexes for which solution experiments indicated such a destabilization. In this study, the factors that influence the SH1-SH2 helix in scallop S1 were examined using monofunctional and bifunctional thiol reagents. The rate of monofunctional labeling of scallop S1 was increased in the presence of MgADP and MgATPgammaS but was inhibited by MgADP.V(i) and actin. The resulting changes in ATPase activities of S1 were symptomatic of SH2 and not SH1 modification, which was confirmed by mass spectrometry analysis. With bifunctional reagents of various lengths, cross-linking did not occur on a short time scale in the absence of nucleotides. In the presence of MgADP, cross-linking was greatly enhanced for all of the reagents. These reactions, as well as the formation of a disulfide bond between SH1 and SH2, were much faster in scallop S1.ADP than in rabbit skeletal S1.ADP and were rate-limited by the initial attachment of the reagent to scallop S1. The cross-linking sites were mapped by mass spectrometry to SH1 and SH2. These results reveal isoform-specific differences in the conformation and dynamics of the SH1-SH2 helix, providing a possible explanation for destabilization of this helix in some scallop S1 but not in other S1 isoform structures.  相似文献   

6.
Using fluorescence resonance energy transfer (FRET), we measured distances from chromophores located at or near the actin-binding stretch of amino acids 633-642 of myosin subfragment 1 (S1), to five points in the acto-S1 complex. Specific labeling of this site was achieved by first attaching the desired chromophore to an "antipeptide" that by means of its charge complementarity specifically binds to this segment of S1 [Chaussepied & Morales (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471] and then cross-linking the fluorescent peptide to the protein. According to this technique, antipeptides containing three different labels, viz., N-dansylaziridine, (iodoacetamido)fluorescein, and monobromobimane, were purified and covalently bound to S1. A second chromophoric group, required for FRET measurements, was selected in such a way as to provide a good spectral overlap with the corresponding peptide chromophore. Cys-707 (SH1) and Cys-697 (SH2) on S1 were modified by using iodoacetamido and maleimido derivatives of rhodamine, 1,N6-ethenoadenosine 5'-diphosphate was trapped at the S1 active site with orthovanadate, Cys-374 on actin was modified with either N-[4-[4-(dimethylamino)phenyl]azo]phenyl]maleimide or N-[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonate, and ADP bound to F-actin was exchanged with the fluorescent etheno analogue. By use of excited-state lifetime fluorometry, the following distances from the stretch 633-642 of S1 to other points on S1 or actin have been measured: Cys-707 (S1), 50.3 A; Cys-697 (S1), 49.4 A; active site of S1, greater than or equal to 44 A; nucleotide binding site (actin), 41.1 A; and Cys-374 (actin), approximately 53 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
J C Grammer  C R Cremo  R G Yount 《Biochemistry》1988,27(22):8408-8415
Ultraviolet irradiation above 300 nm of the stable MgADP-orthovanadate (Vi)-myosin subfragment 1 (S1) complex resulted in covalent modification of the S1 and in the rapid release of trapped MgADP and Vi. This photomodified S1 had Ca2+ATPase activity 4-5-fold higher than that of the non-irradiated control S1, while the K+EDTA-ATPase activity was below 10% of controls. There was a linear correlation between the activation of the Ca2+ATPase and the release of both ADP and Vi with irradiation time. Analysis of the total number of thiols and the ability of photomodified S1 to retrap MgADP by cross-linking SH1 and SH2 with various bifunctional thiol reagents indicated that the photomodification did not involve these reactive thiols. Irradiation of the S1-MgADP-Vi complex caused a large increase in absorbance of the enzyme at 270 nm which was correlated with the release of Vi from the active site, suggesting an aromatic amino acid(s) was (were) involved. However, analysis by three different methods showed no loss of tryptophan. All the irradiation-dependent phenomena could be prevented by replacing Mg2+ with either Co2+, Mn2+, or Ni2+. Unlike previous irradiation studies of Vi-dynein complexes [Lee-Eiford, A., Ow, R. A., & Gibbons, I. R. (1986) J. Biol. Chem. 261, 2337-2342], no peptide bonds were cleaved in photomodified S1. Photomodified S1 was able to retrap MgADP-Vi at levels similar to unmodified S1. Upon irradiation of the photomodified S1-MgADP-Vi complex, MgADP and Vi were again released from the active site, resulting in heavy chain cleavage to form NH2-terminal 21-kDa and COOH-terminal 74-kDa peptides. All evidence indicates that this new photomodification and subsequent chain cleavage occur specifically at the active site.  相似文献   

8.
C R Cremo  J M Neuron  R G Yount 《Biochemistry》1990,29(13):3309-3319
The environment near the ribose binding site of skeletal myosin subfragment 1 (S1) was investigated by use of two adenosine 5'-diphosphate analogues with fluorescent groups attached at the 2'- and 3'-hydroxyls of the ribose ring. We have compared steady-state and time-resolved fluorescent properties of the reversibly bound S1-nucleotide complexes and the complexes generated by N,N'-p-phenylenedimaleimide (pPDM) thiol cross-linking or vanadate (Vi) trapping. A new fluorescent probe, 2'(3')-O-[N-[2-[[[5-(dimethylamino)naphthyl]sulfonyl] amino]ethyl]carbamoyl]adenosine 5'-diphosphate (DEDA-ADP), which contains a base-stable carbamoyl linkage between the ribose ring and the fluorescent dansyl group, was synthesized and characterized. For comparison, we performed parallel experiments with 2'(3')-O-(N-methylanthraniloyl)adenosine 5'-diphosphate (MANT-ADP) [Hiratsuka, T. (1983) Biochim. Biophys. Acta 742, 496-508]. Solute quenching studies indicated that both analogues bound reversibly to a single cleft or pocket near the ribose binding site. However, steady-state polarization measurements indicated that the probes were not rigidly bound to the protein. The quantum yields of both fluorophores were higher for the complexes formed after trapping with pPDM or Vi than for the reversibly bound complexes. Both DEDA-ADP and MANT-ADP, respectively, had nearly homogeneous lifetimes free in solution (3.65 and 4.65 ns), reversibly bound to S1 (12.8 and 8.6 ns), and trapped on S1 by pPDM (12.7 and 8.7 ns) or Vi (12.8 and 8.6 ns). In contrast to the quantum yields, the lifetimes were not increased upon trapping, compared to those of the reversibly bound states. These results suggested that static quenching in the reversibly bound complex was relieved upon trapping. Taken together, the results suggest that there was a conformational change near the ribose binding site upon trapping by either pPDM or Vi. On the basis of the quantum yield, lifetime, polarization, and solute accessibility studies, we could not detect differences between the S1-pPDM-nucleotide analog complex and the S1-Vi-nucleotide analogue complex for either analogue. Thus, previously observed differences with the adenine modified nucleotide analogue 1,N6-ethenoadenosine diphosphate (epsilon ADP) could not be detected with these ribose-modified probes, indicating that structural differences may be localized to the adenine binding site and not transmitted to the region near the ribose ring.  相似文献   

9.
The fluorescence decay of 1,N6-ethenoadenosine diphosphate (epsilon ADP) bound to myosin subfragment 1 (S1) was studied as a function of temperature. The decay was biexponential, and the two lifetimes were quenched relative to the single lifetime of free epsilon ADP. The temperature dependence of the fractional intensities of the decay components showed two states of the S1.epsilon ADP complex. At pH 7.5 in 30 mM TES, 60 mM KCl, and 3 mM MgCl2, the equilibrium constant for the conversion of the low-temperature state (S1L.epsilon ADP) to the high-temperature state (S1H.epsilon ADP) was 40 at physiological temperatures, and delta H degrees = 13 kcal.mol-1 and delta S degrees = 49 cal.deg-1.mol-1. At 10 degrees C the equilibrium constant of S1 for epsilon ADP was 5, indicating that S1H.epsilon ADP was the dominant state, and that for the vanadate complex epsilon ADP.Vi was 0.7, suggesting that in S1.epsilon ADP.Vi the dominant state of the S1-nucleotide complex was converted from S1H.epsilon ADP to S1L.epsilon ADP. The single rotational correlation time of bound epsilon ADP at 10 degrees C decreased from 107 ns in S1.epsilon ADP to 74 ns in S1+.epsilon ADP.Vi. Conversion of the binary complex to the ternary vanadate complex resulted in a 3-A decrease in the energy transfer distance between bound epsilon ADP and N-[4-(dimethylamino)-3,5-dinitrophenyl]maleimide attached to SH1 and a decrease of the average distance between bound epsilon ADP and bound Co2+ from 12.6 to 8.3 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Myosin subfragment 1 (S1) with SH1 (Cys(707)) and SH2 (Cys(697)) groups cross-linked by p-phenylenedimaleimide (pPDM-S1) is thought to be an analog of the weakly bound states of myosin bound to actin. The structural properties of pPDM-S1 were compared in this study to those of S1.ADP.BeF(x) and S1.ADP.AlF(4)(-), i.e., the established structural analogs of the myosin weakly bound states. To distinguish between the conformational effects of SH1-SH2 cross-linking and those due to their monofunctional modification, we used S1 with the SH1 and SH2 groups labeled with N-phenylmaleimide (NPM-S1) as a control in our experiments. The state of the nucleotide pocket was probed using a hydrophobic fluorescent dye, 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]phen ylboronic acid (PPBA). Differential scanning calorimetry (DSC) was used to study the thermal stability of S1. By both methods the conformational state of pPDM-S1 was different from that of unmodified S1 in the S1.ADP.BeF(x) and S1.ADP.AlF(4)(-) complexes and closer to that of nucleotide-free S1. Moreover, BeF(x) and AlF(4)(-) binding failed to induce conformational changes in pPDM-S1 similar to those observed in unmodified S1. Surprisingly, when pPDM cross-linking was performed on S1.ADP.BeF(x) complex, ADP.BeF(x) protected to some extent the nucleotide pocket of S1 from the effects of pPDM modification. NPM-S1 behaved similarly to pPDM-S1 in our experiments. Overall, this work presents new evidence that the conformational state of pPDM-S1 is different from that of the weakly bound state analogs, S1.ADP.BeF(x) and S1.ADP.AlF(4)(-). The similar structural effects of pPDM cross-linking of SH1 and SH2 groups and their monofunctional labeling with NPM are ascribed to the inhibitory effects of these modifications on the flexibility/mobility of the SH1-SH2 helix.  相似文献   

11.
The fluorescent nucleotides epsilon ADP and epsilon ATP were used to study the binding and hydrolysis mechanisms of subfragment 1 (S-1) and acto-subfragment 1 from striated and smooth muscle. The quenching of the enhanced fluorescence emission of bound nucleotide by acrylamide analyzed either by the Stern-Volmer method or by fluorescence lifetime measurements showed the presence of two bound nucleotide states for 1-N6-ethenoadenosine triphosphate (epsilon ATP), 1-N6-ethenoadenosine diphosphate (epsilon ADP), and epsilon ADP-vanadate complexes with S-1. The equilibrium constant relating the two bound nucleotide states was close to unity. Transient kinetic studies showed two first-order transitions with rate constants of approximately 500 and 100 s-1 for both epsilon ATP and epsilon ADP and striated muscle S-1 and 300 and 30 s-1, respectively, for smooth muscle S-1. The hydrolysis of [gamma-32P] epsilon ATP yielded a transient phase of small amplitude (less than 0.2 mol/site) with a rate constant of 5-10 s-1. Consequently, the hydrolysis of the substrate is a step in the mechanism which is distinct from the two conformational changes induced by the binding of epsilon ATP. An essentially symmetric reaction mechanism is proposed in which two structural changes accompany substrate binding and the reversal of these steps occurs in product release. epsilon ATP dissociates acto-S-1 as effectively as ATP. For smooth muscle acto-S-1, dissociation proceeds in two steps, each accompanied by enhancement of fluorescence emission. A symmetric reaction scheme is proposed for the acto-S-1 epsilon ATPase cycle. The very similar kinetic properties of the reactions of epsilon ATP and ATP with S-1 and acto-S-1 suggest that two ATP intermediate states also occur in the ATPase reaction mechanism.  相似文献   

12.
Park S  Burghardt TP 《Biochemistry》2000,39(38):11732-11741
The fluorescence intensity difference between rabbit skeletal myosin subfragment 1 (S1) and nucleotide-bound or trapped S1 isolates ATP-sensitive tryptophans (ASTs) emission from the total tryptophan signal. Neutral (acrylamide) quenching of the ASTs is sensitive to the binding or trapping of nucleotide to the active site of S1. Anion (I(-)) quenching of the ASTs, sensitive to charge separation in the tryptophan micro environment, is negligible. These findings suggest the ASTs sense conformational change during ATPase from negatively charged surroundings. Specific chemical modifications of S1 identified the location of the ASTs. Trp131 was quenched by chemical modification, and its emission was isolated by taking the intensity difference between unmodified and modified S1. Trp131 fluorescence intensity and quenching constant do not distinguish among the bound or trapped nucleotides, suggesting that the vicinity of Trp131 does not change conformation during the ATPase cycle and eliminating Trp131 as an AST. Trp510 fluorescence was quenched by 5'-iodoacetamidofluorescein (5'IAF) modification of the reactive thiol (SH1) of S1. The tryptophan emission enhancement increment due to active site trapping decreases linearly with SH1 modification and extrapolates to 0 for 100% modification. These data identify Trp510 as the primary AST in skeletal S1 in agreement with observations from Dictyostelium (Batra and Manstein (1999) Biol. Chem. 380, 1017-1023) and smooth muscle S1 (Yengo et al. (2000) Biophys. J. 78, 242A). With Trp510 identified as the sole AST, fluorescence difference spectroscopy provides a novel means to monitor the concentration of myosin transient intermediates in ATP hydrolysis.  相似文献   

13.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The (Na+ + K+)-ATPase enzyme of rat brain microsomes can be reversibly inhibited by a new fluorescent sulfhydryl (SH) probe, dimethylaminoaphthalenecysteine-Hg+ (Dn-cys-Hg+). This reagent is more reactive than N-ethylamaleimide (MalNEt) toward membrane sulfhydryl groups. A procedure using the two SH reagents sequentially seems to permit a more selective labelling of the SH groups involved in the (Na+ + K+)-ATPase than is possible by using MalNEt alone. Brain microsomes treated by this method incorporate the fluorescent label within or near the active site of the enzyme. When the probe was bound a blue shift of its fluorescence emission maximum (from 540 to 495 nm) and a 20-fold increase in relative fluorescence occurred. This indicates that the Dn moiety is within a very non-polar region of the membrane.  相似文献   

15.
In order to elucidate the molecular basis of energy transduction by myosin as a molecular motor, a fluorescent ribose-modified ATP analog 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl]-ATP (NBD-ATP), was utilized to study the conformational change of the myosin motor domain during ATP hydrolysis using the fluorescence resonance energy transfer (FRET) method. The FRET efficiency from the fluorescent probe, BD- or AD-labeled at the reactive cysteine residues, SH1 (Cys 707) or SH2 (Cys697), respectively, to the NBD fluorophore in the ATP binding site was measured for several transient intermediates in the ATPase cycle. The FRET efficiency was greater than that using NBD-ADP. The FRETs for the myosin.ADP.AlF4- and myosin.ADP.BeFn ternary complexes, which mimic the M*.ADP.P(i) state and M.ATP state in the ATPase cycle, respectively, were similar to that of NBD-ATP. This suggests that both the SH1 and SH2 regions change their localized conformations to move closer to the ATPase site in the M*.ATP state and M**.ADP.P(i) state than in the M*.ADP state. Furthermore, we measured energy transfer from BD in the essential light chain to NBD in the active site. Assuming the efficiency at different states, myosin adopts a conformation such that the light chain moves closer to the active site by approximately 9 A during the hydrolysis of ATP.  相似文献   

16.
In our previous study [Chalovich, J. M., Greene, L. E., & Eisenberg, E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4909-4913], myosin subfragment 1 that was modified by having its two reactive thiol groups cross-linked by N,N'-p-phenylenedimaleimide (pPDM) was found to resemble the myosin subfragment 1-adenosine 5'-triphosphate (S-1.ATP) complex in its interaction with actin. In the present study, we examined the effect of actin on adenosine 5'-diphosphate (ADP) trapped at the active site of pPDM.S-1. Our results indicate first that, in the presence of actin, ADP is no longer trapped at the active site but exchanges rapidly with free nucleotide. Different pPDM.S-1.nucleotide complexes were then formed by exchanging nucleotide into the active site of pPDM.S-1 in the presence of actin. The binding of pPDM.S-1.ATP or pPDM.S-1.PPi to actin is virtually identical with that of unmodified S-1 in the presence of ATP. Specifically, at mu = 18 mM, 25 degrees C, pPDM.S-1.ATP or pPDM.S-1.PPi binds to unregulated actin with the same affinity as does S-1.ATP, and this binding does not appear to be affected by troponin-tropomyosin. On the other hand, pPDM.S-1.ADP and pPDM.S-1 with no bound nucleotide both show a small, but significant, difference between their binding to actin and the binding of S-1.ATP; pPDM.S-1 and pPDM.S-1.ADP both bind about 2- to 3-fold more strongly to unregulated actin than does S-1.ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Photophosphorylation of epsilon ADP in a chloroplast synthetase system reconstituted with CF1 or with CF1 modified by covalently bound epsilon ADP has been studied. The reconstitution of EDTA-treated chloroplasts with CF1 restores the photophosphorylating activity to about 90%. When the CF1 modified by covalently bound epsilon ADP is used for reconstitution the photophosphorylating activity of EDTA-treated chloroplasts is restored to 37%. Based on the results of a photochemical study of the chloroplast ATP-synthetase system reconstituted with CF1 with covalently bound epsilon ADP it may be assumed that the substrate, adenine, participates in proton translocation to inorganic phosphate in the active center of the coupling enzyme during photophosphorylation.  相似文献   

18.
3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP containing a photoreactive benzophenone moiety, was used as a probe of the ATP binding site of myosin subfragment 1 (SF1). The inactivation of SF1 NH+4-EDTA ATPase by the bifunctional thiol crosslinking system cobalt(II)/cobalt(III) phenanthroline complexes was enhanced by Bz2ATP to the same degree as by ATP. This treatment resulted in the stable trapping of Bz2ATP at the active site in nearly stoichiometric amounts in a manner exactly analogous to ATP (Wells, J.A., and Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970). Irradiation of SF1 containing trapped [3H]Bz2ATP gave approximately 50% covalent incorporation of the trapped nucleotide into the enzyme. Analysis of photolabeled SF1 by gel electrophoresis showed that all of the [3H]Bz2ATP was attached to the 95-kDa heavy chain fragment. No label was found in the light chains. Similar analysis of the same protein after limited trypsin treatment demonstrated that approximately 75% of the [3H]Bz2ATP was bound to the central 50-kDa peptide and its 75-kDa precursor from the heavy chain. The N-terminal 25-kDa tryptic peptide, shown to be photolabeled by other ATP analogs (Szilagyi, L., Balint, M., Sreter, F.A., and Gergely, J. (1979) Biochem. Biophys. Res. Commun. 87, 936-945; Okamoto, Y., and Yount, R.G. (1983) Biophys. J. 41, 298a), was not labeled (less than 1%) by Bz2ATP. These results demonstrate that portions of the 50 kDa-peptide of the heavy chain are within 6-7 A of the ATP binding site on SF1 and possibly contribute to nucleotide binding.  相似文献   

19.
Qu Q  Sharom FJ 《Biochemistry》2002,41(14):4744-4752
The P-glycoprotein multidrug transporter carries out ATP-driven cellular efflux of a wide variety of hydrophobic drugs, natural products, and peptides. Multiple binding sites for substrates appear to exist, most likely within the hydrophobic membrane spanning regions of the protein. Since ATP hydrolysis is coupled to drug transport, the spatial relationship of the drug binding sites relative to the ATPase catalytic sites is of considerable interest. We have used a fluorescence resonance energy transfer (FRET) approach to estimate the distance between a bound substrate and the catalytic sites in purified P-glycoprotein. The fluorescent dye Hoechst 33342 (H33342), a high-affinity P-glycoprotein substrate, bound to the transporter and acted as a FRET donor. H33342 showed greatly enhanced fluorescence emission when bound to P-glycoprotein, together with a substantial blue shift, indicating that the drug binding site is located in a nonpolar environment. Cys428 and Cys1071 within the catalytic sites of P-glycoprotein were covalently labeled with the acceptor fluorophore NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole). H33342 fluorescence was highly quenched when bound to NBD-labeled P-glycoprotein relative to unlabeled protein, indicating that FRET takes place from the bound dye to NBD. The distance separating the bound dye from the NBD acceptor was estimated to be approximately 38 A. Transition-state P-glycoprotein with the complex ADP*orthovanadate*Co2+ stably trapped at one catalytic site bound H33342 with similar affinity, and FRET measurements led to a similar separation distance estimate of 34 A. Since previous FRET studies indicated that a fluorophore bound within the catalytic site was positioned 31-35 A from the interfacial region of the bilayer, the H33342 binding site is likely located 10-14 A below the membrane surface, within the cytoplasmic leaflet of the membrane, in both resting-state and transition-state P-glycoprotein.  相似文献   

20.
《BBA》2013,1827(7):848-860
To find out whether and how the adenine nucleotide translocator-1 (ANT-1) inhibition due to NH2htau and Aβ1-42 is due to an interplay between these two Alzheimer's peptides, ROS and ANT-1 thiols, use was made of mersalyl, a reversible alkylating agent of thiol groups that are oriented toward the external hydrophilic phase, to selectively block and protect, in a reversible manner, the –SH groups of ANT-1. The rate of ATP appearance outside mitochondria was measured as the increase in NADPH absorbance which occurs, following external addition of ADP, when ATP is produced by oxidative phosphorylation and exported from mitochondria in the presence of glucose, hexokinase and glucose-6-phosphate dehydrogenase. We found that the mitochondrial superoxide anions, whose production is induced at the level of Complex I by externally added Aβ1-42 and whose release from mitochondria is significantly reduced by the addition of the VDAC inhibitor DIDS, modify the thiol group/s present at the active site of mitochondrial ANT-1, impair ANT-1 in a mersalyl-prevented manner and abrogate the toxic effect of NH2htau on ANT-1 when Aβ1-42 is already present. A molecular mechanism is proposed in which the pathological Aβ-NH2htau interplay on ANT-1 in Alzheimer's neurons involves the thiol redox state of ANT-1 and the Aβ1-42-induced ROS increase. This result represents an important innovation because it suggests the possibility of using various strategies to protect cells at the mitochondrial level, by stabilizing or restoring mitochondrial function or by interfering with the energy metabolism providing a promising tool for treating or preventing AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号