首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative mapping studies facilitate the identification of genes located in quantitative trait locus (QTL) regions in domestic animals by utilizing information from the human genome. Radiation hybrid (RH) mapping is effective for this purpose because of its high resolution in ordered gene mapping on chromosomes. We constructed an RH map of pig chromosome 7, by adding 23 markers associated with genes. This RH map clearly demonstrated the mosaic of homology between pig chromosome 7 (SSC7) and human chromosomes 6, 14 and 15 at a 'gene' level, and was confirmed by linkage analysis. Clarification of the homology of SSC7 to human chromosomes will contribute to the elucidation of the gene(s) responsible for QTL detected on this chromosome.  相似文献   

2.
In order to improve the informativeness of the cytogenetic map of the rabbit genome, fourteen markers were regionally mapped to individual chromosomes. The localizations comprise eleven gene loci (PRLR, GHR, HK1, ACE, TF, 18S+28S rDNA, CYP2C4, PMP2, TCRB, ALOX15 and MT1) and three microsatellite loci (Sat13, Sol33 and D1Utr6). Five of the genes contain known microsatellite sequences. To achieve these localizations, homologous and heterologous small insert clones, and clones from a rabbit Bacterial Artificial Chromosome (BAC) library were used as probes for fluorescence in situ hybridization experiments. Results indicate that especially BAC clones are a valuable tool for cytogenetic mapping. Some of the genes were selected for mapping on the basis of human- rabbit comparative painting data, to achieve localizations on gene-poor rabbit chromosomes. Our data are, in general, in agreement with the human-rabbit comparative painting data. By mapping microsatellite sequences that have also been used in linkage studies, links are provided between the genetic and physical maps of the rabbit genome. Linkage groups I, VI and XI could be assigned to chromosomes 1, 5 and 3 respectively. Moreover, in this paper we give an overview of the current status of the rabbit cytogenetic map. This map now comprises 62 physically mapped genes, which are scattered over all autosomes, except chromosome 2, and the X chromosome.  相似文献   

3.
We report the localization of 92 new gene-based markers assigned to rat chromosome 1 by linkage or radiation hybrid mapping. The markers were chosen to enrich gene mapping data in a region of the rat chromosome known to contain several of the principal quantitative trait loci in rodent models of human multifactorial disease. The composite map reported here provides map information on a total of 139 known genes, including 80 that have been localized in mouse and 109 that have been localized in human, and integrates the gene-based markers with anonymous microsatellites. The evolutionary breakpoints identifying 16 segments that are homologous regions in the human genome are defined. These data will facilitate genetic and comparative mapping studies and identification of novel candidate genes for the quantitative trait loci that have been localized to the region.  相似文献   

4.
5.
In an effort to extend our understanding of the evolutionary relationship between the canine and human genomes, we have developed and positioned 52 new gene-associated polymorphic markers on the canine meiotic linkage map. Canine-specific PCR primers were developed from the consensus of published sequences of several mammalian genomes and were designed to span intronic regions, thus optimizing the probability that a polymorphic site was included. The resulting markers were analyzed on a panel of three-generation canine reference families and the data were incorporated into the current meiotic linkage map. The data were compared with those generated by three chromosome paint studies in an effort to understand the distribution and frequency of microrearrangements within the canine genome. Forty-eight of 52 genes map to a chromosomal region predicted to contain genes from the corresponding region of the human genome according to all published reciprocal chromosome paint studies. Meiotic linkage mapping data for three genes can be used to resolve discrepancies between the published reciprocal chromosome paint studies, and for an additional two genes, meiotic mapping data allow evolutionary breakpoints to be more precisely defined. We conclude that microrearrangements of evolutionarily conserved segments between the canine and human genomes are rare, occurring for less than 0.5% of gene data reported to date. In addition, we have found that the placement of genes on the meiotic linkage map is a useful mechanism for resolving discrepancies between existing data sets. Received: 7 February 2001 / Accepted: 9 May 2001  相似文献   

6.
To get more information about the order of genes located in Bos taurus (BTA) chromosome 27 segments, supposed to harbor loci influencing clinical mastitis and somatic cell count, and to identify genes that serve as positional candidates for the mentioned traits, we constructed a high-resolution, comparative, and comprehensive gene map for BTA27. The map includes 57 loci in a 5000-rad cattle-hamster whole genome radiation hybrid panel supported by 50 syntenic assignments in a cattle-murine somatic hybrid cell panel. Thirty-eight new loci (36 genes, 2 microsatellites) together with repeated mappings of 5 genes and 7 microsatellites and integration of existing data from 7 microsatellites were used to generate a comprehensive RH5000 map. The RH map, constructed at lod score criterion 8 using the software RHMAP v.3.0, consisted of three linkage groups 23, 22, and 590 cR5000 in length. Gene assignments on BTA27 and the localization of 8 more genes on BTA8 and BTA14 previously predicted on BTA8/BTA27 and BTA14/BTA27 narrowed down significantly the chromosome break points between the three cattle chromosomes and segments on Homo sapiens chromosomes HSA4 and HSA8. Defined evolutionary break points increase the accuracy of comparative in silico mapping of further human genes in conserved chromosome segments of BTA27.  相似文献   

7.
The recently published draft sequence of the human genome will provide a basic reference for the comparative mapping of genomes among mammals. In this study, we selected 214 genes with complete coding sequences on Homo sapiens chromosome 4 (HSA4) to search for orthologs and expressed sequence tag (EST) sequences in eight other mammalian species (cattle, pig, sheep, goat, horse, dog, cat, and rabbit). In particular, 46 of these genes were used as landmarks for comparative mapping of HSA4 and Sus scrofa chromosome 8 (SSC8); most of HSA4 is homologous to SSC8, which is of particular interest because of its association with genes affecting the reproductive performance of pigs. As a reference framework, the 46 genes were selected to represent different cytogenetic bands on HSA4. Polymerase chain reaction (PCR) products amplified from pig DNA were directly sequenced and their orthologous status was confirmed by a BLAST search. These 46 genes, plus 11 microsatellite markers for SSC8, were typed against DNA from a pig-mouse radiation hybrid (RH) panel with 110 lines. RHMAP analysis assigned these 57 markers to 3 linkage groups in the porcine genome, 52 to SSC8, 4 to SSC15, and 1 to SSC17. By comparing the order and orientation of orthologous landmark genes on the porcine RH maps with those on the human sequence map, HSA4 was recognized as being split into nine conserved segments with respect to the porcine genome, seven with SSC8, one with SSC15, and one with SSC17. With 41 orthologous gene loci mapped, this report provides the largest functional gene map of SSC8, with 30 of these loci representing new single-gene assignments to SSC8.  相似文献   

8.
A radiation hybrid (RH) map of the equine X chromosome (ECAX) was obtained using the recently produced 5000(rad) horse x hamster hybrid panel. The map comprises 34 markers (16 genes and 18 microsatellites) and spans a total of 676 cR(5000), covering almost the entire length of ECAX. Cytogenetic alignment of the RH map was improved by fluorescent in situ hybridization mapping of six of the markers. The map integrates and refines the currently available genetic linkage, syntenic, and cytogenetic maps, and adds new loci. Comparison of the physical location of the 16 genes mapped in this study with the human genome reveals similarity in the order of the genes along the entire length of the two X chromosomes. This degree of gene order conservation across evolutionarily distantly related species has up to now been reported only between human and cat. The ECAX RH map provides a framework for the generation of a high-density map for this chromosome. The map will serve as an important tool for positional cloning of X-linked diseases/conditions in the horse.  相似文献   

9.
Human and sheep chromosome-specific probes were used to construct comparative painting maps between the pig (Suiformes), cattle and sheep (Bovidae), and humans. Various yet unknown translocations were observed that would assist in a more complete reconstruction of homology maps of these species. The number of homologous segments that can be identified with sheep probes in the pig karyotype exceeds that described previously by chromosome painting between two non-primate mammals belonging to the same order. Sheep probes painted 62 segments on pig autosomes and delineated not only translocations, but also 9 inversions. All inversions were paracentric and indicate that these rearrangements may be characteristic for chromosomal changes in suiforms. Hybridizations of all sheep painting probes to cattle chromosomes confirmed the chromosome conservation in bovids. In addition, we observed a small translocation that was previously postulated from linkage mapping data, but was not yet described by physical mapping. The chromosome painting data are complemented with a map of available comparative gene mapping data between pig and sheep genomes. A detailed table listing the comparative gene mapping data between pig and cattle genomes is provided. The reanalysis of the pig karyotype with a new generation of human paint probes provides an update of the human/pig comparative genome map and demonstrates two new chromosome homologies. Seven conserved segments not yet identified by chromosome painting are also reported. Received: 2 October 2000 / Accepted: 15 January 2001  相似文献   

10.
DNA polymerase alpha and primase are two key enzymatic components of the eukaryotic DNA replication complex. In situ hybridization of cloned cDNAs for mouse DNA polymerase alpha and for the two subunits of mouse primase has been utilized to physically map these genes in the mouse genome. The DNA polymerase alpha gene (Pola) was mapped to the mouse X chromosome in region C-D. The gene encoding the p58 subunit of primase (Prim2) was located to mouse chromosome 1 in region A5-B and the p49 subunit gene (Prim1) was found to be on mouse chromosome 10 in the distal part of band D that is close to the telomere. Current knowledge of mouse and human conserved chromosomal regions along with the findings presented here lead to predictions of where the genes for the DNA primase subunits may be found in the human genome: the p58 subunit gene may be on human chromosome 2 and the p49 subunit gene on human chromosome 12. The mapping of Pola to region C-D of the mouse X chromosome adds a new marker in a conserved region between the mouse X chromosome and region Xp21-22.1 of the human X chromosome.  相似文献   

11.
Rearranged gene order between pig and human in a QTL region on SSC 7   总被引:3,自引:0,他引:3  
On porcine Chromosome 7, the region surrounding the MHC region contains QTL influencing many traits including growth, back fat thickness, and carcass composition. Towards the identification of the responsible gene(s), this article describes an increase of density of the radiated hybrid map of SSC 7 in the q11-q14 region and the comparative analysis of gene order on the porcine RH map and human genome assembly. Adding 24 new genes in this region, we were able to build a framework map that fills in gaps on the previous maps. The new software Carthagene was used to build a robust framework in this region. Comparative analysis of human and porcine maps revealed a global conservation of gene order and of distances between genes. A rearranged fragment of around 3.7 Mb was, however, found in the pig approximately 20 Mb upstream from the expected location on the basis of the human map. This rearrangement, found by RH mapping on the IMpRH 7.000 rads panel, has been confirmed by two-color FISH and by mapping on the high resolution IMNpRH2 12.000 rads panel. The rearranged fragment contains two microsatellites found at the most likely QTL location in the INRA QTL experiment. It also contains the BMP5 gene, which, together with CLPS, could be considered as a possible candidate.  相似文献   

12.
13.
We report on the analyses of genes encoding immunoglobulin heavy and light chains in the rabbit 6.51× whole genome assembly. This OryCun2.0 assembly confirms previous mapping of the duplicated IGK1 and IGK2 loci to chromosome 2 and the IGL lambda light chain locus to chromosome 21. The most frequently rearranged and expressed IGHV1 that is closest to IG DH and IGHJ genes encodes rabbit VHa allotypes. The partially inbred Thorbecke strain rabbit used for whole-genome sequencing was homozygous at the IGK but heterozygous with the IGHV1a1 allele in one of 79 IGHV-containing unplaced scaffolds and IGHV1a2, IGHM, IGHG, and IGHE sequences in another. Some IGKV, IGLV, and IGHA genes are also in other unplaced scaffolds. By fluorescence in situ hybridization, we assigned the previously unmapped IGH locus to the q-telomeric region of rabbit chromosome 20. An approximately 3-Mb segment of human chromosome 14 including IGH genes predicted to map to this telomeric region based on synteny analysis could not be located on assembled chromosome 20. Unplaced scaffold chrUn0053 contains some of the genes that comparative mapping predicts to be missing. We identified discrepancies between previous targeted studies and the OryCun2.0 assembly and some new BAC clones with IGH sequences that can guide other studies to further sequence and improve the OryCun2.0 assembly. Complete knowledge of gene sequences encoding variable regions of rabbit heavy, kappa, and lambda chains will lead to better understanding of how and why rabbits produce antibodies of high specificity and affinity through gene conversion and somatic hypermutation.  相似文献   

14.
Comparative mapping using somatic cell hybrids   总被引:2,自引:0,他引:2  
Summary Comparative mapping, or ascertaining the gene linkage relationships between different species, is rapidly developing. This is possible because new techniques in chromosome identification and somatic cell hybridization, such as the generation of hybrids preferentially segregating chromosomes of any desired species including rodents, and the development of gene transfer techniques have yielded new information about the human and rodent gene maps. In addition, the discovery and characterization of mouse subspecies has generated new mouse sexual genetic linkage data. The following picture is emerging. Several X-linked genes in man are X-linked in all mammalian species tested. The linkage relationships of several tightly linked genes, less than 1 map unit apart, are also conserved in all mammalian species tested. Ape autosomal genes are assigned to ape chromosomes homologous to their human counterparts indicating extensive conservation in the 12 million years (MYR) of evolution from apes to man. Similarly, mouse and rat, 10 MYR apart in evolution, have several large autosomal synteny groups conserved. In comparing the mouse and human gene maps we find that human genes assigned to different arms of the same human chromosome are unlinked in the mouse; mouse genes large map distances (20 to 45 cM) apart are very likely to be unlinked in the human. However, several autosomal synteny groups 10 to 20 cM apart, including thePgd, Eno-1, Pgm-1 group on human chromosome arm lp, are conserved in mice and man. This suggests that homology mapping, the superimposition of one species gene map on the homologous conserved portion of another species genome may be possible, and that ancestral autosomal synteny groups should be detectable. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976.  相似文献   

15.
Bi- and uni-directional chromosome painting (ZOO-FISH) and gene mapping have revealed correspondences between human chromosome (HSA) 17 and porcine chromosome (SSC) 12 harboring economically important quantitative trait loci. In the present study, we have assigned 204 genes localized on HSA17 to SSC12 to generate a comprehensive comparative map between HSA17 and SSC12. Two hundred fifty-five primer pairs were designed using porcine sequences orthologous with human genes. Of the 255 primer pairs, 208 (81.6%) were used to assign the corresponding genes to porcine chromosomes using the INRA-Minnesota 7000-rad porcine x Chinese hamster whole genome radiation hybrid (IMpRH) panel. Two hundred three genes were integrated into the SSC12 IMpRH linkage maps; and one gene, PPARBP, was found to link to THRA1 located in SSC12 but not incorporated into the linkage maps. Three genes (GIT1, SLC25A11, and HT008) were suggested to link to SSC12 markers, and the remaining gene (RPL26) did not link to any genes/expressed sequence tags/markers registered, including those in the present study. A comparison of the gene orders among SSC12, HSA17, and mouse chromosome 11 indicates that intra-chromosomal rearrangements occurred frequently in this ancestral mammalian chromosome during speciation.  相似文献   

16.
17.
The termination of protein synthesis in Escherichia coli requires two codon-specific factors termed RF1 and RF2. RF1 mediates UAA- and UAG-directed termination, while RF2 mediates UAA- and UGA-directed termination. The genes encoding these factors have been isolated and sequenced, and RF2 was found to be encoded in two separate reading frames. The map position of RF1 has been reported as 27 min on the E. coli chromosome, while the RF2 map position has not yet been identified. In this study, two new and independent methods for gene mapping, using pulsed field gel electrophoresis and an ordered bacteriophage library spanning the entire chromosome, were used to localize the map position of the RF2 gene. In addition, the location of the RF1 gene was more precisely defined. The RF2 gene is located at 62.3 min on the chromosome, while the RF1 gene is located at 26.7 min. This approach to mapping cloned genes promises to be a rapid and simple means for determining the gene order of the genome.  相似文献   

18.
Ten DNA markers were localized in the human genome by a screening procedure against the radiation hybrid somatic cell panel (GeneBridge 4 RH Panel) using polymerase chain reaction (RH mapping method). DNA markers were developed to nucleotide sequences adjacent to NotI sites of human chromosome 3 (NotI-STS markers) and also to nucleotide sequences of human cDNA (EST markers). Three EST markers mapped (B10164, S16R and 18F5R) were localized in the human genome for the first time. Marker B10164 was found to be homologous to the nucleotide sequence of the BASP1 gene coding a major receptor protein. Markers S16R and 18F5R presumably tagged new genes, because no homologies were revealed among the nucleotide sequences presented in the databases. For four NotI-STS, more precise localization on human chromosome 3 was determined. On the basis of the data obtained, the NotI map may be integrated with other types of physical maps of human chromosome 3. RH mapping with a standard commercial panel of radiation hybrid somatic cells provided a chance to integrate the data obtained into international databases and existing integrated human chromosomal maps.  相似文献   

19.
Radiation hybrid (RH) mapping of the mouse genome provides a useful tool in the integration of existing genetic and physical maps, as well as in the ongoing effort to generate a dense map of expressed sequence tags. To facilitate functional analysis of mouse Chromosome 5, we have constructed a high-resolution RH map spanning 75 cM of the chromosome. During the course of these studies, we have developed RHBase, an RH data management program that provides data storage and an interface to several RH mapping programs and databases. We have typed 95 markers on the T31 RH panel and generated an integrated map, pooling data from several sources. The integrated RH map ranges from the most proximal marker, D5Mit331 (Chromosome Committee offset, 3 cM), to D5Mit326, 74.5 cM distal on our genetic map (Chromosome Committee offset, 80 cM), and consists of 138 markers, including 89 simple sequence length polymorphic markers, 11 sequence-tagged sites generated from BAC end sequence, and 38 gene loci, and represents average coverage of approximately one locus per 0.5 cM with some regions more densely mapped. In addition to the RH mapping of markers and genes previously localized on mouse Chromosome 5, this RH map places the alpha-4 GABA(A) receptor subunit gene (Gabra4) in the central portion of the chromosome, in the vicinity of the cluster of three other GABA(A) receptor subunit genes (Gabrg1-Gabra2-Gabrb1). Our mapping effort has also defined a new cluster of four genes in the semaphorin gene family (Sema3a, Sema3c, Sema3d, and Sema3e) and the Wolfram syndrome gene (Wfs1) in this region of the chromosome.  相似文献   

20.
Rabbit (Oryctolagus cuniculus), besides its interest for medical research and biotechnological applications, has a small agronomic production in southern European countries. However, it is still a "map-poor" species with about 80 genes mapped. Recently, useful tools for research on this species have been developed, such as heterologous human-rabbit chromosome painting data and a rabbit BAC library. In this study, our aim is to enrich the rabbit cytogenetic map using the FISH technique. Towards this, we have used cDNAs (rabbit and non rabbit) present in the public databases to determine intra-exon primers used to screen our three-genome equivalent BAC library, by standard PCR directly on DNA pools, and by hybridization of high-density filters. 133 BAC clones containing the genes of interest were isolated and FISH-mapped to the rabbit chromosomes. We present the localization of new genes on all rabbit chromosomes except OCU20 and OCUY and some preliminary data on the rabbit/human comparative map. In addition, this set of BAC clones quite regularly distributed on the rabbit genome will be useful to isolate microsatellites, in order to construct a first generation genetic map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号