首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we have shown that activation of adenosine A(2a) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of the selective A(2a) receptor agonist CGS-21680 elicits potent, dose-dependent decreases in mean arterial pressure and preferential, marked hindlimb vasodilation. Although A(2a) receptor activation does not change lumbar sympathetic nerve activity, it does markedly enhance the preganglionic adrenal sympathetic nerve activity, which will increase epinephrine release and could subsequently elicit hindlimb vasodilation via activation of beta(2)-adrenergic receptors. Therefore we investigated whether this hindlimb vasodilation was due to neural or humoral mechanisms. In chloralose-urethan-anesthetized male Sprague-Dawley rats, we monitored cardiovascular responses to stimulation of NTS adenosine A(2a) receptors (CGS-21680, 20 pmol/50 nl) in the intact control animals; after pretreatment with propranolol (2 mg/kg iv), a beta-adrenergic antagonist; after bilateral lumbar sympathectomy; after bilateral adrenalectomy; and after combined bilateral lumbar sympathectomy and adrenalectomy. After beta-adrenergic blockade, stimulation of NTS adenosine A(2a) receptors produced a pressor response and a hindlimb vasoconstriction. Lumbar sympathectomy reduced the vasodilation seen in the intact animals by approximately 40%, and adrenalectomy reduced it by approximately 80%. The combined sympathectomy and adrenalectomy virtually abolished the hindlimb vasodilation evoked by NTS A(2a) receptor activation. We conclude that the preferential, marked hindlimb vasodilation produced by stimulation of NTS adenosine A(2a) receptors is mediated by both the efferent sympathetic nerves directed to the hindlimb and the adrenal glands via primarily a beta-adrenergic mechanism.  相似文献   

2.
Our previous studies showed that stimulation of adenosine A(1) receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation vs. sympathetic and vasopressinergic vasoconstriction. Because NTS A(1) adenosine receptors inhibit baroreflex transmission in the NTS and contribute to the pressor component of the HDR, we hypothesized that these receptors also contribute to the redistribution of blood from the visceral to the muscle vasculature via prevailing sympathetic and vasopressinergic vasoconstriction in the visceral (renal and mesenteric) vascular beds and prevailing β-adrenergic vasodilation in the somatic (iliac) vasculature. To test this hypothesis, we compared the A(1) adenosine-receptor-mediated effects of each vasoactive factor triggered by NTS A(1) adenosine receptor stimulation [N(6)-cyclopentyladenosine (CPA), 330 pmol in 50 nl] on the regional vascular responses in urethane/chloralose-anesthetized rats. The single-factor effects were separated using adrenalectomy, β-adrenergic blockade, V(1) vasopressin receptor blockade, and sinoaortic denervation. In intact animals, initial vasodilation was followed by large, sustained vasoconstriction with smaller responses observed in renal vs. mesenteric and iliac vascular beds. The initial β-adrenergic vasodilation prevailed in the iliac vs. mesenteric and renal vasculature. The large and sustained vasopressinergic vasoconstriction was similar in all vascular beds. Small sympathetic vasoconstriction was observed only in the iliac vasculature in this setting. We conclude that, although A(1) adenosine-receptor-mediated β-adrenergic vasodilation may contribute to the redistribution of blood from the visceral to the muscle vasculature, this effect is overridden by sympathetic and vasopressinergic vasoconstriction.  相似文献   

3.
Selective activation of adenosine A(1) and A(2a) receptors in the subpostremal nucleus tractus solitarius (NTS) increases and decreases mean arterial pressure (MAP), respectively, and decreases heart rate (HR). We have previously shown that the decreases in MAP evoked by NTS A(2a) receptor stimulation were accompanied with differential sympathetic responses in renal (RSNA), lumbar (LSNA), and preganglionic adrenal sympathetic nerve activity (pre-ASNA). Therefore, now we investigated whether stimulation of NTS A(1) receptors via unilateral microinjection of N(6)-cyclopentyladenosine (CPA) elicits differential activation of the same sympathetic outputs in alpha-chloralose-urethane-anesthetized male Sprague-Dawley rats. CPA (0.33-330.0 pmol in 50 nl) evoked dose-dependent increases in MAP, variable decreases in HR, and differential increases in all recorded sympathetic outputs: upward arrow pre-ASNA > upward arrow RSNA > or = upward arrow LSNA. Sinoaortic denervation + vagotomy abolished the MAP and LSNA responses, reversed the normal increases in RSNA into decreases, and significantly attenuated increases in pre-ASNA. NTS ionotropic glutamatergic receptor blockade with kynurenate sodium (4.4 nmol/100 nl) reversed the responses in MAP, LSNA, and RSNA and attenuated the responses in pre-ASNA. We conclude that afferent inputs and intact glutamatergic transmission in the NTS are necessary to mediate the pressor and differential sympathoactivatory responses to stimulation of NTS A(1) receptors.  相似文献   

4.
Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex control of regional sympathetic outputs.  相似文献   

5.
Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors reversed the normal depressor and sympathoinhibitory responses to stimulation of NTS A2a receptors into pressor and sympathoactivatory responses and attenuated the heart rate decreases; however, it did not change the increases in pre-ASNA. We conclude that NTS NO mechanisms differentially affect regional sympathetic outputs and differentially contribute to the pattern of regional sympathetic responses evoked by stimulation of NTS A2a receptors.  相似文献   

6.
Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on RSNA versus pre-ASNA support the hypothesis that these receptor subtypes are differentially located/expressed on NTS neurons/neural terminals controlling different sympathetic outputs.  相似文献   

7.
Activation of ATP P(2x) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of alpha,beta-methylene ATP (alpha,beta-MeATP) elicits fast initial depressor and sympathoinhibitory responses that are followed by slow, long-lasting inhibitory effects. Activation of NTS adenosine A(2a) receptors via microinjection of CGS-21680 elicits slow, long-lasting decreases in arterial pressure and renal sympathetic nerve activity (RSNA) and an increase in preganglionic adrenal sympathetic nerve activity (pre-ASNA). Both P(2x) and A(2a) receptors may operate via modulation of glutamate release from central neurons. We investigated whether intact glutamatergic transmission is necessary to mediate the responses to NTS P(2x) and A(2a) receptor stimulation. The hemodynamic and neural (RSNA and pre-ASNA) responses to microinjections of alpha,beta-MeATP (25 pmol/50 nl) and CGS-21680 (20 pmol/50 nl) were compared before and after pretreatment with kynurenate sodium (KYN; 4.4 nmol/100 nl) in chloralose-urethan-anesthetized male Sprague-Dawley rats. KYN virtually abolished the fast responses to alpha,beta-MeATP and tended to enhance the slow component of the neural responses. The depressor responses to CGS-21680 were mostly preserved after pretreatment with KYN, although the increase in pre-ASNA was reduced by one-half following the glutamatergic blockade. We conclude that the fast responses to stimulation of NTS P(2x) receptors are mediated via glutamatergic ionotropic mechanisms, whereas the slow responses to stimulation of NTS P(2x) and A(2a) receptors are mediated mostly via other neuromodulatory mechanisms.  相似文献   

8.
Sensitivity of the ventromedial hypothalamus (VMH) to electrical stimulation was compared with that of the locus coeruleus (LC) in urethane-anesthetized rats. Based not only on current strengths required to elicit threshold effects, but also on magnitude of pressor responses to suprathreshold stimulation, the LC was consistently more sensitive than the VMH. Despite this greater pressor sensitivity, splanchnic nerve firing increased almost equally upon stimulation of either brain area. Similar comparisons made in other rats following bilateral adrenalectomy or pretreatment with a vasopressin antagonist showed no significant alteration of pressor and sympathetic responsiveness to stimulation of either the LC or the VMH. When frequency of neural firing was recorded from a lumbar sympathetic trunk instead of the splanchnic nerve, increases in sympathetic nerve activity produced by LC stimulation were significantly larger than those produced from the VMH. The results suggest that greater pressor sensitivity of the LC is due, at least in part, to stronger constriction in vascular beds innervated by the lumbar sympathetic chains.  相似文献   

9.
Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes integrated in the NTS.  相似文献   

10.
Stimulation of nucleus of the solitary tract (NTS) A(2a)-adenosine receptors elicits cardiovascular responses quite similar to those observed with rapid, severe hemorrhage, including bradycardia, hypotension, and inhibition of renal but activation of preganglionic adrenal sympathetic nerve activity (RSNA and pre-ASNA, respectively). Because adenosine levels in the central nervous system increase during severe hemorrhage, we investigated to what extent these responses to hemorrhage may be due to activation of NTS adenosine receptors. In urethane- and alpha-chloralose-anesthetized male Sprague-Dawley rats, rapid hemorrhage was performed before and after bilateral nonselective or selective blockade of NTS adenosine-receptor subtypes [A(1)- and A(2a)-adenosine-receptor antagonist 8-(p-sulfophenyl)theophylline (1 nmol/100 nl) and A(2a)-receptor antagonist ZM-241385 (40 pmol/100 nl)]. The nonselective blockade reversed the response in RSNA (-21.0 +/- 9.6 Delta% vs. +7.3 +/- 5.7 Delta%) (where Delta% is averaged percent change from baseline) and attenuated the average heart rate response (change of -14.8 +/- 4.8 vs. -4.4 +/- 3.4 beats/min). The selective blockade attenuated the RSNA response (-30.4 +/- 5.2 Delta% vs. -11.1 +/- 7.7 Delta%) and tended to attenuate heart rate response (change of -27.5 +/- 5.3 vs. -15.8 +/- 8.2 beats/min). Microinjection of vehicle (100 nl) had no significant effect on the responses. The hemorrhage-induced increases in pre-ASNA remained unchanged with either adenosine-receptor antagonist. We conclude that adenosine operating in the NTS via A(2a) and possibly A(1) receptors may contribute to posthemorrhagic sympathoinhibition of RSNA but not to the sympathoactivation of pre-ASNA. The differential effects of NTS adenosine receptors on RSNA vs. pre-ASNA responses to hemorrhage supports the hypothesis that these receptors are differentially located/expressed on NTS neurons/synaptic terminals controlling different sympathetic outputs.  相似文献   

11.
Leu-enkephalin evoked dose-dependent pulmonary vasoconstriction in isolated perfused rat lungs. The pressor responses were not attenuated by either naloxone or naltrexone nor were they mimicked by morphine. Blockade of histamine receptors with pyrilamine or blockade of serotonin receptors with methysergide also failed to antagonize leu-enkephalin-induced pulmonary vasoconstrictor responses. These result suggest that neither opiate, histamine, nor serotonin receptors are involved with the pressor effects of leu-enkephalin on the pulmonary circulation. We propose that leu-enkephalin may have direct vasoconstrictor effects on the pulmonary circulation of isolated perfused rat lungs that may not be mediated by conventional opiate receptors.  相似文献   

12.
The effects of 6-keto-PGE1 on vascular resistance and vascular responses to sympathetic nerve stimulation and vasoconstrictor hormones were investigated in the feline mesenteric vascular bed. Infusions of 6-keto-PGE1 into the superior mesenteric artery dilated the mesenteric vascular bed and markedly inhibited vasoconstrictor responses to sympathetic nerve stimulation, norepinephrine and angiotensin II. The effects of 6-keto-PGE1 and PGE1 on vascular resistance and vasoconstrictor responses were quite similar and both substances inhibited responses to nerve stimulation and pressor hormones in a reversible manner. Responses to nerve stimulation, norepinephrine and angiotensin II were inhibited to a similar extent during infusion of 6-keto-PGE1 and PGE1. Results of these studies suggest that 6-keto-PGE1, a newly identified prostaglandin metabolite, and PGE1 possess the ability to inhibit the vasconstrictor effects of sympathetic nerve stimulation and pressor hormones by a nonspecific action on vascular smooth muscle in the feline small intestine.  相似文献   

13.
To determine whether atrial natriuretic factor (ANF) affects vasoconstrictor responses to electrical stimulation of sympathetic nerves or intra-arterial norepinephrine (NE), changes in perfusion pressure were measured during lumbar sympathetic nerve stimulation (LSNS, 1-8 Hz), or administration of NE (50-200 ng), in an isolated constant flow-perfused hindlimb of chloralose-anesthetized rabbit before and after intra-arterial infusion of ANF (0.5 ng.mL-1.min-1). ANF significantly attenuated responses to LSNS (relative potency, RP = 0.65) and to NE (RP = 0.47). We conclude that ANF attenuates vasoconstrictor responses to both LSNS and NE. Thus ANF alters sympathetic nervous system mediated changes in vascular resistance possibly at the neuroeffector site.  相似文献   

14.
Ascending pathways mediating somatoautonomic reflexes in exercising dogs   总被引:1,自引:0,他引:1  
The ascending spinal pathways mediating somatocardiovascular reflexes during exercise were studied in unanesthetized dogs by placing lesions in the lumbar spinal cord. After training to run on a treadmill with hindlimbs only, 20 dogs were anesthetized and instrumented using sterile surgical techniques. To chronically record heart rate and arterial blood pressure, the aorta was cannulated via the omocervical artery. To test the intactness of descending spinal sympathetic pathways, reflex pressor responses to baroreceptor hypotension were produced by bilateral carotid arterial occlusion using pneumatic vessel occluders placed around the common carotid arteries. To generate transient ischemic exercise (120 s), a pneumatic occluder was placed around the left iliac artery. Eight to 10 days after instrumentation, blood pressure and heart rate were monitored at rest and during hindlimb running with and without simultaneous iliac arterial occlusion. The modest pressor response and tachycardia elicited by hindlimb exercise were markedly augmented by simultaneous hindlimb ischemia (i.e., iliac arterial occlusion). Lesion placement in the dorsolateral sulcus area and the dorsolateral funiculus at L2 significantly reduced the blood pressure and heart rate responses to simultaneous exercise occlusion. The cardiovascular responses to nonischemic exercise and bilateral carotid arterial occlusion were not altered by such spinal sections. It is concluded that in the dog the ascending spinal pathways mediating cardiovascular responses to ischemic exercise are located in the lateral funiculus, including the dorsolateral sulcus area and dorsolateral funiculus.  相似文献   

15.
Electrical stimulation (100 Hz, 1 ms, 150 microA, 10 s) of the anterior hypothalamus in chloralose-anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in arterial pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response was accompanied by an increase in plasma noradrenaline and adrenaline levels. Peripheral sympathectomy with guanethidine selectively abolished the primary phase of the biphasic pressor response, while bilateral removal of the adrenal medulla eliminated only the secondary component. After alpha-adrenergic blockade with phentolamine, the primary phase of the stimulation-induced response was reduced while the secondary pressor component was blocked and replaced by a significant hypotension. The intravenous administration of sotalol enhanced the secondary pressor component without affecting the stimulation-induced plasma noradrenaline and adrenaline responses. After treatment with atropine, the secondary pressor effect was also potentiated, as the reflex bradycardia normally associated with the response was eliminated. A subsequent administration of sotalol in these rats further potentiated the secondary pressor component to stimulation. In rats treated with atropine and sotalol, the sympathetic vasomotor and the adrenomedullary pressor responses could be dissociated according to thresholds and stimulus frequency or current-response characteristics. The results suggest that in intact rats, adrenaline-induced vasodilation and reflex cardiac inhibition contribute to either reduce or mask the adrenomedullary component of the biphasic pressor response evoked by stimulation of the anterior hypothalamus. The study also raises the hypothesis of a dual regulation of both components of the sympathetic system in the anterior hypothalamic region.  相似文献   

16.
The role of the autonomic nervous system in the pressor response to the electrical stimulation of different gastric zones has been studied in rats. The stimulus was applied before and after the following interventions: bilateral vagotomy, ganglionic blockade, alpha-adrenergic receptor blockade and beta-adrenergic receptor blockade. After the ganglionic blockade no pressor responses to the electrical stimulus were observed. After the alpha-adrenergic blockade a lower pressor response was observed. A hypertensive response can be induced by mechanical, chemical or electrical stimulation of gastric receptors. It is concluded that the pressor reflex following the application of an electrical stimulus on different zones of the digestive tract is mediated by the sympathetic nervous system and that the efferent pathways are mainly alpha-adrenergic ones.  相似文献   

17.
Neural and humoral mechanisms involved in the reflex pressor response during mechanical stimulation of the stomach of rats were investigated. The arterial blood pressure response was prevented by inhibition of alpha-adrenergic vasoconstriction using either an alpha-adrenergic blocker or a ganglionic blocker. In addition, there was a small decrease in the response after nephrectomy. However, there were no alterations in the response after beta-adrenergic blockade, bilateral adrenalectomy, inhibition of converting enzyme activity with enalapril or bilateral cervical vagus nerve transection. The heart rate was not modified after either intervention. After vagotomy the time of recovery of the basal blood pressure was significantly prolonged. It can be concluded that the blood pressure response to mechanical stimulation of the stomach wall is of neural rather than of humoral origin and mainly involves activation of alpha-adrenergic receptors. Vagal efferent pathways could be also involved.  相似文献   

18.
Mode of neural control mediating rat tail vasodilation during heating   总被引:5,自引:0,他引:5  
The purpose of this investigation was to delineate the mode of efferent neural control mediating rat tail vasodilation during body heating. Tail blood flow (venous occlusion plethysmography), tail skin temperature over the ventral vascular bundle, and arterial pressure were measured in Sprague-Dawley rats anesthetized with pentobarbital sodium (45 mg/kg). Three protocols were followed: anesthesia of the lumbar sympathetic chain, bilateral lumbar sympathectomy, and sympathetic nerve stimulation during varying degrees of alpha-adrenergic receptor blockade. Mean tail blood flow and tail vascular conductance (TVC) during body heating were 40.3 +/- 8.7 ml X 100 ml-1 X min-1 and 39.2 +/- 9.2 ml X 100 ml-1 X min-1 X 100 mmHg-1, respectively. Interruption of sympathetic nerve activity by sympathetic nerve anesthetization or sympathectomy during heat stress caused a nonsignificant increase in TVC to 112.7 +/- 1.8 and 121.12 +/- 6.3%, respectively, of the values achieved with body heating. Sympathectomy performed in normothermic animals that had recovered from prior heating caused an increase in TVC to 128.4 +/- 14.0% of the levels achieved during the previous heating period. In addition, sympathetic nerve stimulation after complete alpha-adrenergic receptor blockade failed to produce a vasodilation [control TVC = 10.2 +/- 3.9 vs. TVC during nerve stimulation = 10.4 +/- 3.9 (P greater than 0.05)]. It is concluded that the increase in TVC during body heating occurs solely via a reduction in vasoconstrictor nerve activity.  相似文献   

19.
Ischemic stimulation of cardiac receptors evokes excitatory sympathetic reflexes. Although the nucleus of the solitary tract (NTS) is an important site for integration of visceral afferents, its involvement in the cardiac-renal sympathetic reflex remains to be fully defined. This study examined the role of glutamate receptor subtypes in the commissural NTS in the sympathetic responses to stimulation of cardiac receptors. Renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats. Cardiac receptors were stimulated by epicardial application of bradykinin (BK; 10 microg/ml). Application of BK significantly increased the mean arterial pressure from 78.2 +/- 2.2 to 97.5 +/- 2.9 mmHg and augmented RSNA by 38.5 +/- 2.5% (P < 0.05). Bilateral microinjection of 10 pmol of 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) antagonist, into the commissural NTS eliminated the pressor and RSNA responses to BK application in 10 rats. However, microinjection of 2-amino-5-phosphonopentanoic acid (0.1 and 1 nmol, n = 8), an NMDA- receptor antagonist, or alpha-methyl-4-carboxyphenylglycine (0.1 and 1 nmol, n = 5), a glutamate metabotropic receptor antagonist, failed to attenuate significantly the pressor and RSNA responses to stimulation of cardiac receptors with BK. Thus this study suggests that non-NMDA, but not NMDA and glutamate metabotropic, receptors in the commissural NTS play an important role in the sympathoexcitatory reflex response to activation of cardiac receptors during myocardial ischemia.  相似文献   

20.
1. Evidence gathered over the last 30 years has firmly established that the rostral ventrolateral medulla (RVLM) is a major vasomotor center in the brainstem, harboring sympathetic premotor neurons responsible for generating and maintaining basal vasomotor tone and resting levels of arterial blood pressure. Although the RVLM has been almost exclusively classified as a vasopressor area, in this report we review some evidence suggesting a prominent role of the RVLM in muscle vasodilation during defense-alerting responses.2. Defense-alerting reactions are a broad class of behavior including flexion of a limb, fight/flight responses, apologies, etc. They comprise species-distinctive motor and neurovegetative adjustments. Cardiovascular responses include hypertension, tachycardia, visceral vasoconstriction, and muscle vasodilation. Since defense-alerting reactions generally involve intense motor activation, muscle vasodilation is regarded as a key feature of these responses.3. In anesthetized or unanesthetized-decerebrate animals, natural or electrical stimulation of cutaneous and muscle afferents produced hypertension, tachycardia, and vasodilation restricted to the stimulated limb.4. Unilateral inactivation of the RVLM contralateral to the stimulated limb abolished cardiovascular adjustments to stimulation of cutaneous and muscle afferents. Within the RVLM glutamatergic synapses mediate pressor responses, whereas GABAergic synapses mediates muscle vasodilation.5. In urethane-anesthetized rats, electrical stimulation of the hypothalamus elicited hypertension, tachycardia, visceral vasoconstriction, and hindlimb vasodilation. The hindlimb vasodilation induced by hypothalamic stimulation is a complex response, involving reduction of sympathetic vasoconstrictor tone, release of catecholamines by the adrenal medulla, and a still unknown system that may use nitric oxide as a mediator.6. Blockade of glutamatergic transmission within the RVLM selectively blocks muscle vasodilation induced by hypothalamic stimulation.7. The results obtained suggest that, besides its role in the generation and maintenance of the sympathetic vasoconstrictor drive, the RVLM is also critical for vasodilatory responses during defense reactions. The RVLM may contain several, distinctive mechanisms for muscle vasodilation. Anatomical and functional characterization of these pathways may represent a breakthrough in our understanding of cardiovascular control in normal and/or pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号