首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A comparative map was made of chicken chromosome 13 (GGA13) with a part of human chromosome 5 (HSA5). Microsatellite markers specific for GGA13 were used to screen the Wageningen chicken bacterial artificial chromosome (BAC) library. Selected BAC clones were end sequenced and 57 sequence tag site (STS) markers were designed for contig building. In total, 204 BAC clones were identified which resulted in a coverage of about 20% of GGA13. Identification of genes was performed by a bi-directional approach. The first approach starting with sequencing mapped chicken BAC subclones, where sequences were used to identify orthologous genes in human and mouse by a basic local alignment search tool (BLAST) database search. The second approach started with the identification of chicken orthologues of human genes in the HSA5q23-35 region. The chicken orthologous genes were subsequently mapped by fluorescent in situ hybridisation (FISH) and/or single neucleotide polymorphism typing. The total number of genes mapped on GGA13 is increased from 14 to a total of 20 genes. Genes mapped on GGA13 have their orthologues on HSA5q23-5q35 in human and on Mmu11, Mmu13 and Mmu18 in mouse.  相似文献   

2.
Chowdhary BP  Raudsepp T 《Genomics》2000,64(1):102-105
The chicken (GGA) and human (HSA) genomes diverged around 300-350 Myr ago. Due to this large phylogenetic distance, significant synteny conservation has not been anticipated between the genomes of the two species. However, Zoo-FISH with HSA4 chromosome-specific paint on chicken metaphase chromosomes shows that the human chromosome corresponds largely to the GGA4cen-->q26 region. Comparative gene mapping data in the two species, though limited, provide strong support for these observations. The findings, together with the very recently published data on HSA9-GGAZ and HSA12-GGA1, show that some large chromosomal segments share conserved synteny in the two species. These syntenies are considerably disrupted in the mouse. This makes us believe that despite very early divergence, parts of the human and chicken genomes are more conserved than those of human and mouse, which radiated only 100-120 Myr ago. Moreover, the HSA4-GGA4q correspondence points to a "candidate" chromosome from the karyotype of a mammal-bird ancestor. The findings are thus a small but important step toward understanding the evolution of the two genomes.  相似文献   

3.
For the purpose of comparative mapping of quail (Coturnix c. japonica) and human (Homo sapiens) genomes, DNA fragments from human chromosome 3 (HSA3p14-21 and HSA3q13-23) were localized on quail mitotic chromosomes. Using the method of double-color fluorescence DNA-DNA in situ hybridization, these fragments were mapped to two different microchromosomes. Earlier, similar studies were performed using chicken mitotic chromosomes. There it was demonstrated that the clones of interest were distributed among three microchromosomes (GGA12, GGA14, and GGA15). Thus, interspecific difference in the location of human chromosome 3 DNA fragments in the genomes of closely related avian species was discovered. A new confirmation of the hypothesis on the preferable localization of the gene-rich human chromosome regions on avian microchromosomes was obtained. At the same time, a suggestion on the localization of some orthologous genes in the genome of the organism under study was made: ARF4, SCN5A, PHF7, ABHD6, ZDHHC3, MAPKAPK3, ADSYNA (homolog of chicken chromosome 12), DRD2, PP2C-ETA, RAB7, CCKAR, and PKD1 (homolog of chicken chromosome 15). However, localization of the corresponding quail genes needs to be confirmed, as far as the sequences used were only the orthologs of the corresponding chicken genes.  相似文献   

4.
For the purpose of comparative mapping of quail (Coturnix c. japonica) and human (Homo sapiens) genomes, DNA fragments from human chromosome 3 (HSA3p14-21 and HSA3q13-23) were localized on quail mitotic chromosomes. Using the method of double-color fluorescence DNA-DNA in situ hybridization, these fragments were mapped to two different microchromosomes. Earlier, similar studies were performed using chicken mitotic chromosomes. There it was demonstrated that the clones of interest were distributed among three microchromosomes (GGA12, GGA14, and GGA15). Thus, interspecific difference in the location of human chromosome 3 DNA fragments in the genomes of closely related avian species was discovered. A new confirmation of the hypothesis on the preferable localization of the gene-rich human chromosome regions on avian microchromosomes was obtained. At the same time, a suggestion on the localization of some orthologous genes in the genome of the organism under study was made: ARF4, SCN5A, PHF7, ABHD6, ZDHHC3, MAPKAPK3, ADSYNA (homolog of chicken chromosome 12), DRD2, PP2C-ETA, RAB7, CCKAR, and PKD1 (homolog of chicken chromosome 15). However, localization of the corresponding quail genes needs to be confirmed, as far as the sequences used were only the orthologs of the corresponding chicken genes.  相似文献   

5.
Ninety four NotI-STS markers to seventy two individual NotI clones were developed basing on DNA nucleotide sequences from NotI-"jumping" and "linking" NotI-libraries of human chromosome 3. The localization of NotI-STS markers and their ordering on chromosome was established by combined data of RH-mapping (our data), contig-mapping, cytogenetic mapping and in silico mapping. Performed comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions, 3p21.33 (marker NLI-256) and 3p21.31 (NL3-005), and segmental duplication. Identical DNA fragments are localized in the regions 12q and 3p22-21.33 (marker NL3-007). In the region 3q28-q29 (marker NLM-084) a fragment was detected with its identical copies present also on chromosomes 1, 2, 15 and 19. For 69 NotI-STSs, significant homologies with nucleotide sequences of 70 genes and two cDNAs were detected taking in consideration homologies to NotI-STS 5'- and 3'-terminal sequences. Association of NotI-STSs with genes is confirmed by high correlation of gene density distribution with the density of NotI-STS markers on the map of human chromosome 3. Obtained data evidence possibility of NotI-STS marker application as gene markers and allow considering constructed NotI-map as gene map of human chromosome 3.  相似文献   

6.
The physical and comparative map of GGA15 was improved by the construction of 9 BAC contigs around loci previously mapped on GGA15 by linkage analysis. In total, 240 BAC clones were isolated, covering 30–35% of GGA15, and 120 STS were developed (104 STS derived from BAC end sequences and 18 STS derived within genes). Seventeen chicken orthologues of human genes located on human Chr 22q11-q12 were directly mapped within BAC contigs of GGA15. Furthermore, the partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases and revealed matches to 26 genes, ESTs, and genomic clones located on HSA22q11-q12 and HSA12q24. These results provide a better alignment of GGA15 with the corresponding regions in human and mouse, and improve our knowledge of the evolution and dynamics of the vertebrate genome. GenBank Accession Numbers: The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession numbers BZ592394-BZ592544.  相似文献   

7.
Thirteen goat BAC clones containing coding sequences from HSA7, HSA12q, HSA4 and HSA6p were fluorescence in situ mapped to river buffalo (Bubalus bubalis, BBU) and sheep (Ovis aries, OAR) R-banded chromosomes. The following type I loci were mapped: BCP to BBU8q32 and OAR4q32, CLCN1 to BBU8q34 and OAR4q34, IGFBP3 to BBU8q24 and OAR4q27, KRT to BBU4q21 and OAR 3q21, IFNG to BBU4q23 and OAR3q23, IGF1 to BBU4q31 and OAR3q31, GNRHR to BBU7q32 and OAR6q32, MTP to BBU7q21 and OAR6q15, PDE6B to BBU7q36 and OAR6q36, BF to BBU2p22 and OAR20q22, EDN1 to BBU2p24 and OAR20q24, GSTA1 to BBU2p22 and OAR20q22, OLADRB (MHC) to BBU2p22 and OAR20q22. All mapped loci appeared to be located on homologous chromosomes and chromosome bands in both bovids. Comparison between gene orders in bovid (BBU and OAR) and human (HSA) chromosomes revealed complex rearrangements, especially between BBU7/OAR6 and HSA4, as well as between BBU2p/OAR20 and HSA6p.  相似文献   

8.
An examination of the synteny blocks between mouse and human chromosomes aids in understanding the evolution of chromosome divergence between these two species. We comparatively mapped the human (HSA) Chromosome (Chr) 14q11.2-q13 cytogenetic region with the intervals of orthologous genes on mouse (MMU) chromosomes. A lack of conserved gene order was identified between the human cytogenetic region and the interval of orthologs on MMU 12. The evolutionary breakpoint junction was defined within 2.5 Mb, where the conserved synteny of genes on HSA 14 changes from MMU 12 to MMU 14. At the evolutionary breakpoint junction, a human EST (GI: 1114654) with identity to the human and mouse BCL2 interacting gene, BNIP3, was mapped to mouse Chr 3. New gene homologs of LAMB1, MEOX2, NRCAM, and NZTF1 were identified on HSA 7 and on the proximal cytogenetic region of HSA 14 by mapping mouse genes recently reported to be genetically linked within the relevant MMU 12 interval. This study contributes to the identification of homology relationships between the genes of HSA 14q11.2-q13 and mouse Chr 3, 12, and 14. Received: 16 March 2000 / Accepted: 16 June 2000  相似文献   

9.
Sequence tagged sites generated for 60 NotI clones (NotI-STSs) from human chromosome 3-specific NotI-jumping and NotI-linking libraries were physically located using PCR screening of a radiation hybrid (RH) GeneBridge4 panel. The NotI map of chromosome 3 was generated using these RH-mapping data and those obtained earlier by FISH and sequencing of the corresponding NotI clones. The sequences of the NotI clones showed significant homologies with known genes and/or ESTs for 58 NotI-STSs (97%). These 58 NotI clones displayed 91-100% identity to 54 genes and 23 cDNA/EST clones. One known and two hypothetical protein-coding genes were localized for the first time and nine cDNA clones (unknown genes) were also carefully mapped only in this work. Three newly mapped genes are histone gene H1X (NR1-BK20C) and genes for hypothetical proteins THC1032178 and THC1024604 (NL1-243).  相似文献   

10.
To improve the physical and comparative map of chicken chromosome 24 (GGA24; former linkage group E49C20W21) bacterial artificial chromosome (BAC) contigs were constructed around loci previously mapped on this chromosome by linkage analysis. The BAC clones were used for both sample sequencing and BAC end sequencing. Sequence tagged site (STS) markers derived from the BAC end sequences were used for chromosome walking. In total 191 BAC clones were isolated, covering almost 30% of GGA24, and 76 STS were developed (65 STS derived from BAC end sequences and 11 STS derived within genes). The partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases, and revealed matches to 19 genes, expressed sequence tags (ESTs) and genomic clones located on human chromosome 11q22-q24 and mouse chromosome 9. Furthermore, 11 chicken orthologues of human genes located on HSA11q22-q24 were directly mapped within BAC contigs of GGA24. These results provide a better alignment of GGA24 with the corresponding regions in human and mouse and identify several intrachromosomal rearrangements between chicken and mammals.  相似文献   

11.
A large number of significant QTL for economically important traits including average daily gain have been located on SSC1q, which, as shown by chromosome painting, corresponds to four human chromosomes (HSA9, 14, 15 and 18). To provide a comprehensive comparative map for efficient selection of candidate genes, 81 and 34 genes localized on HSA9 and HSA14 respectively were mapped to SSC1q using a porcine 7000-rad radiation hybrid panel (IMpRH). This study, together with the cytogenetic map (http://www2.toulouse.inra.fr/lgc/pig/cyto/genmar/htm/1GM.HTM), demonstrates that SSC1q2.1-q2.13 corresponds to the region ranging from 44.6 to 63.2 Mb on HSA14q21.1-q23.1, the region from 86.5 to 86.8 Mb on HSA15q24-q25, the region from 0.9 to 27.2 Mb on HSA9p24.3-p21, the region from 35.1 to 38.0 Mb on HSA9p13, the region from 70.3 to 79.3 Mb on HSA9q13-q21 and the region from 96.4 to 140.0 Mb on HSA9q22.3-q34. The conserved synteny between HSA9 and SSC1q is interrupted by at least six sites, and the synteny between HSA14 and SSC1q is interrupted by at least one site.  相似文献   

12.
PHOSPHO1 is a recently identified phosphatase expressed at high levels in the chicken growth plate and which may be involved in generating inorganic phosphate for skeletal matrix mineralization. Using a degenerate RT-PCR approach a fragment of human PHOSPHO1 was cloned. This enabled the identification of the human orthologue on HSA17q21, and the mouse orthologue on a region of MMU11 that exhibits conservation of synteny with HSA17q21. Chicken PHOSPHO1 was mapped by SSCP analysis to position 44 cM on GGA27, adjacent to the HOXB@ (44 cM) and COL1A1 (36 cM) loci. Comparison of genes on GGA27 with their orthologues on the preliminary draft of the human genome identifies regions of conserved synteny equivalent to 25 Mb on HSA17q21.2-23.3 and approximately 20 Mb on GGA27 in which the gene order appears to be conserved. Mapping of the PHOSPHO1 genes to regions of HSA17q21.3, MMU11 and GGA27 that exhibit conservation of synteny provides strong evidence that they are orthologous.  相似文献   

13.
In an ongoing study human X chromosomal mental retardation genes (MRX) were mapped in the chicken genome. Up to now the homologs of 13 genes were localized by FISH techniques. Four genes from HSAXp (TM4SF2, RSK2/RPS6KA3, NLGN4, ARX) map to GGA1q13-->q31, and seven genes from HSAXq (OPHN1, AGTR2, ARHGEF6, PAK3, FACL4/ACS4, FMR2, ATRX) to GGA4p. The gene-rich region of HSAXq28 proved to be much less conserved. GDI1 localized to GGA1pter and SLC6A8 to a mid-sized microchromosome. The order of the genes was determined from the newly available genome sequence data from chicken, which reveals exact colinearity between the genes in HSAXp and GGA1q13-->q31, but completely scrambled gene order between the genes with common synteny from HSAXq and GGA4p. This result supports the hypothesis that the human X chromosome is a real ancient autosomal linkage group.  相似文献   

14.
We present a gene-based RH map of the chicken microchromosome GGA14, known to have synteny conservations with human chromosomal regions HSA16p13.3 and HSA17p11.2. Microsatellite markers from the genetic map were used to check the validity of the RH map and additional markers were developed from chicken EST data to yield comparative mapping data. A high rate of intra-chromosomal rearrangements was detected by comparison to the assembled human sequence. Finally, the alignment of the RH map to the assembled chicken sequence showed a small number of discordances, most of which involved the same region of the chromosome spanning between 40.5 and 75.9 cR6000 on the RH map.  相似文献   

15.
Sheep chromosome 2q (OAR2q), which is homologous with human chromosome 2q (HSA2q), and cattle chromosome 2 (BTA2), is known to contain several loci contributing to carcass traits. However, the chromosomal rearrangements differentiating these chromosomes among the three species have not yet been determined and thus precise correspondences between the locations of sheep and human genes are not known. Twenty-six genes from HSA2q (2q21.1-->2q36) have been assigned to OAR2q by genetic linkage mapping to refine this area of the sheep genome. Seventy-six genes were initially selected from HSA2q. Sixty-eight percent of the PCR primer sets designed for these genes amplified successfully in sheep, and 34% amplified polymorphic products. Part of the proximal arm of OAR2q was found to be inverted compared with HSA2q. The breakpoint has been localised near the growth differentiation factor 8 gene (GDF8), spanning 380 kb between the positions of the hypothetical protein (FLJ20160) (HSA2:191008944-191075046) and glutaminase (GLS) (HSA2:191453847-191538510) (Build36.1).  相似文献   

16.
Ten type I loci from HSA10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA10) maps on BBU14q13 and OAR13q13, VIM (HSA10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26, THBD (HSA20) maps on BBU14q15 and OAR13q15 while AVP/OXT, GNAS1, HCK, and TOP1 (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13, respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed.  相似文献   

17.
We screened a porcine bacterial artificial chromosome (BAC) and a P1 derived artificial chromosome (PAC) library to construct a sequence-ready approximately 1.2-Mb BAC/PAC contig of the ryanodine receptor-1 gene (RYR1) region on porcine chromosome (SSC) 6q1.2. This genomic segment is of special interest because it harbors the locus for stress susceptibility in pigs and a putative quantitative trait locus for muscle growth. Detailed physical mapping of this gene-rich region allowed us to assign to this contig 17 porcine genes orthologous to known human chromosome 19 genes. Apart from the relatively well-characterized porcine gene RYR1, the other 16 genes represent novel chromosomal assignments and 14 genes have been cloned for the first time in pig. Comparative analysis of the porcine BAC/PAC contig with the human chromosome (HSA) 19q13.13 map revealed a completely conserved gene order of this segment between pig and human. A detailed porcine-human-mouse comparative map of this region was constructed.  相似文献   

18.
We have utilized a panel of Chinese hamster x mouse somatic cell hybrids segregating mouse chromosomes to assign a gene for arylsulfatase A (ARSA) to mouse chromosome 15. Considering our previous assignment of a gene for diaphorase-1 (DIA1) to the same mouse chromosome, we have evidence for another syntenic relationship that has been conserved, since the homologous loci for human ARSA and DIA1 are both located on human chromosome 22. Because MMU 15 and HSA 22 are quite dissimilar in size and banding patterns, we have attempted to identify the conserved portion by regional mapping of human DIA1 and ARSA using somatic cell hybrids segregating a human chromosome translocation t(15;22)(q14;q13.31). The results assign human DIA1 and ARSA to the distal sub-band of 22q13 (region 22q13.31 leads to qter). The locus for mitochondrial aconitase (ACO2) has been separated by the breakpoint from DIA1 and ARSA and is located more proximally.  相似文献   

19.
The melanocortin receptors (MCR) belong to the superfamily of G-protein-coupled receptors that participate in both peripheral and central functions, including regulation of energy balance. Genomic clones of the five chicken (GGA) MCRs were isolated and used to find the chromosomal location of each of the loci. The genes encoding MC2R and MC5R mapped to the middle part of the long arm of chromosome 2 (GGA2q22-q26) and MC4R proximally on the same chromosome arm, close to the centromere (2q12). This arrangement seems to be conserved on chromosome 18 in the human (HSA18). The MC1R and MC3R genes mapped to different microchromosomes that also appear to share homology with the respective human localization. The conserved synteny of the MC2R, MC5R, and MC4R cluster in chicken (GGA2), human (HSA18), and other mammals suggests that this cluster is ancient and was formed by local gene duplications that most likely occurred early in vertebrate evolution. Analysis of conserved synteny with mammalian genomes and paralogon segments prompted us to predict an ancestral gene organization that may explain how this family was formed through both local duplication and tetraploidization processes.  相似文献   

20.
Genes located on human chromosome 12 (HSA12) are conserved on pig chromosomes 5 and 14 (SSC5 and SSC14), with HSA12q23.3-->q24.11 harboring the evolutionary breakpoint between these chromosomes. For this study, pig sequence-tagged sites (STS) were developed for nine HSA12 genes flanking this breakpoint. Radiation hybrid (RH) mapping using the IMpRH panel revealed that COL2A1, DUSP6, KITLG, PAH and STAB2 map to SSC5, while PXN, PLA2G1B, SART3 and TCF1 map to SSC14. Polymorphisms identified in COL2A1, DUSP6, PAH, PLA2G1B and TCF1 were used for genetic linkage mapping and confirmed the map locations for these genes. Our results indicate that the HSA12 evolutionary breakpoint occurs between STAB2 and SART3 in a region spanning less than five million basepairs. These results refine the comparative map of the HSA12 evolutionary breakpoint region and help to further elucidate the extensive gene order rearrangements between HSA12 and SSC5 and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号