首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the greatest current challenges in proteomics is to develop an understanding of cellular communication and regulation processes, most of which involve noncovalent interactions of proteins with various binding partners. Mass spectrometry plays an important role in all aspects of these research efforts. This article provides a survey of mass spectrometry-based approaches for exploring protein–ligand interactions. A wide array of techniques is available, and the choice of method depends on the specific problem at hand. For example, the high-throughput screening of compound libraries for binding to a specific receptor requires different approaches than structural studies on multiprotein complexes. This review is directed to readers wishing to obtain a concise yet comprehensive overview of existing experimental techniques. Specific emphasis is placed on emerging methods that have been developed within the last few years.  相似文献   

2.
Surface plasmon resonance (SPR)-biosensor techniques directly provide essential information for the study and characterization of small molecule-nucleic acid interactions, and the use of these methods is steadily increasing. The method is label-free and monitors the interactions in real time. Both dynamic and steady-state information can be obtained for a wide range of reaction rates and binding affinities. This article presents the basics of the SPR technique, provides suggestions for experimental design, and illustrates data processing and analysis of results. A specific example of the interaction of a well-known minor groove binding agent, netropsin, with DNA is evaluated by both kinetic and steady-state SPR methods. Three different experiments are used to illustrate different approaches and analysis methods. The three sets of results show the reproducibility of the binding constants and agreement from both steady-state and kinetic analyses. These experiments also show that reliable kinetic information can be obtained, even with difficult systems, if the experimental conditions are optimized to minimize mass transport effects. Limitations of the biosensor-SPR technique are also discussed to provide an awareness of the care needed to conduct a successful experiment.  相似文献   

3.
Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein–membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

4.
5.
The interactions of fatty acids with proteins have been studied by a variety of conventional approaches for decades. However, only limited aspects of fatty acid-protein interactions have been elucidated, even with the integration of information gleaned from the many techniques. Judgments must be made about what information is most reliable, particularly when derivatives of fatty acids are substituted for natural fatty acids. In recent years, the application of techniques of structural biology has brought about dramatic advances in this important area of lipid research. High-resolution crystallographic and NMR structures of several proteins with bound fatty acids reveal the complete tertiary structure of the protein and molecular details of fatty acid-protein interactions. The examples presented include most of the known structures of (non-enzymatic) proteins that bind fatty acids. The proteins are found in very different compartments of cells and organisms: the plasma compartment (human serum albumin); the cytosolic compartment of mammalian cells (fatty acid- binding proteins); the cytosol of plant cells (nonspecific lipid-transfer protein); the nucleus of mammalian cells (peroxisome proliferator-activated receptor and hepatic nuclear factor 4); and a bacterial membrane (halorhodopsin). This review discusses the structural features of these proteins and their binding pocket(s) and compares the specific modes of their interactions with fatty acids.  相似文献   

6.
7.
The interactions of fatty acids with proteins have been probed with a great variety of techniques and strategies. Many approaches have substituted covalently labeled fatty acids or structurally related molecules. Information from such studies ultimately requires validation by studies with natural fatty acids. However, even the best conventional approaches with natural fatty acids generally have revealed only limited aspects of fatty acid-protein interactions. In contrast, recent crystallographic and NMR studies of several proteins with bound fatty acids provide complete three-dimensional structures with molecular details of these interactions. This presentation reviews three examples of proteins that are indirectly or directly involved in cell signaling: a protein in the plasma compartment (human serum albumin); a protein family in the cytosolic compartment of mammalian cells (fatty-acid-binding proteins), and a nuclear protein (peroxisome proliferator-activated receptor): it also discusses the structures of these proteins and their binding pocket(s), compares their specific modes of interactions with fatty acids, and discusses established and potential roles of fatty acid-protein interactions in cell signaling.  相似文献   

8.
Quantitative mass spectrometry (MS) in combination with affinity purification approaches allows for an unbiased study of protein-protein and peptide-protein interactions. In shotgun approaches that are based on proteolytic digestion of complex protein mixtures followed by two-dimensional liquid-phase chromatography, the separation effort prior to MS analysis is focused on tryptic peptides. Here we developed an improved offline 2-D liquid chromatography-MS/MS approach for the identification and quantification of binding proteins utilizing reversed-phase capillary columns with acidic acetonitrile-containing eluents in both chromatographic dimensions. A specific fractionation scheme was applied in order to obtain samples with evenly distributed peptides and to fully utilize the separation space in the second dimension nanoLC-MS/MS. We report peptide-protein interaction studies to identify phosphorylation-dependent binding partners of the T cell adapter protein ADAP. The results of the SILAC-based pull-down experiments show this approach is well suited for distinguishing phosphorylation-specific interactions from unspecific binding events. The data provide further evidence that phosphorylated Tyr 595 of ADAP may serve as a direct binding site for the SH2 domains of the T cell proteins SLP76 and NCK. From a technical point of view we provide a detailed protocol for an offline 2-D RP-RP LC-MS/MS method that offers a robust and time-saving alternative for quantitative interactome analysis.  相似文献   

9.
Glycosaminoglycans are long linear and complex polysaccharides that are fundamental components of the mammalian extracellular matrix. Therefore, it is crucial to appropriately characterize molecular structure, dynamics, and interactions of protein-glycosaminoglycans complexes for improving understanding of molecular mechanisms underlying GAG biological function. Nevertheless, this proved challenging experimentally, and theoretical techniques are beneficial to construct new hypotheses and aid the interpretation of experimental data. The scope of this mini-review is to summarize four specific aspects of the current theoretical approaches for investigating noncovalent protein-glycosaminoglycan complexes such as molecular docking, free binding energy calculations, modeling ion impact, and addressing the phenomena of multipose binding of glycosaminoglycans to proteins.  相似文献   

10.
Protein-protein interactions mediate most of the processes in the living cell and control homeostasis of the organism. Impaired protein interactions may result in disease, making protein interactions important drug targets. It is thus highly important to understand these interactions at the molecular level. Protein interactions are studied using a variety of techniques ranging from cellular and biochemical assays to quantitative biophysical assays, and these may be performed either with full-length proteins, with protein domains or with peptides. Peptides serve as excellent tools to study protein interactions since peptides can be easily synthesized and allow the focusing on specific interaction sites. Peptide arrays enable the identification of the interaction sites between two proteins as well as screening for peptides that bind the target protein for therapeutic purposes. They also allow high throughput SAR studies. For identification of binding sites, a typical peptide array usually contains partly overlapping 10-20 residues peptides derived from the full sequences of one or more partner proteins of the desired target protein. Screening the array for binding the target protein reveals the binding peptides, corresponding to the binding sites in the partner proteins, in an easy and fast method using only small amount of protein.In this article we describe a protocol for screening peptide arrays for mapping the interaction sites between a target protein and its partners. The peptide array is designed based on the sequences of the partner proteins taking into account their secondary structures. The arrays used in this protocol were Celluspots arrays prepared by INTAVIS Bioanalytical Instruments. The array is blocked to prevent unspecific binding and then incubated with the studied protein. Detection using an antibody reveals the binding peptides corresponding to the specific interaction sites between the proteins.  相似文献   

11.
Receptor-ligand interactions have traditionally been evaluated using a number of biochemical techniques including radioligand binding, photoaffinity labeling, crosslinking, and chemical modification. In modern biochemistry, these approaches have largely been superseded by site-directed mutagenesis in the study of protein function, owing in part to a better understanding of the chemical properties of oligonucleotides and to the ease with which mutant clones can now be generated. The Altered Sites II in vitro Mutagenesis System from the Promega Corporation employs oligonucleotides containing two mismatches to introduce specific nucleotide substitutions in the nucleic acid sequence of a target DNA. One of these mismatches will alter the primary sequence of a given protein, whereas the second will give rise to a silent restriction site that is used to screen for mutants. Transient transfection of tsA201 cells with mutant cDNA constructs using calcium phosphate as a carrier for plasmid DNA permits expression of recombinant receptors that can be characterized using radioligand binding assays. In this article, we focus on site-directed mutagenesis, heterologous expression in eukaryotic cells, and radioligand binding as a methodology to enable the characterization of receptor-ligand interactions.  相似文献   

12.
Traditionally, quantification of protein-ligand affinity is performed using kinetic or equilibrium measurements. However, if the binding reaction proceeds via a stable covalent complex, these approaches are often limited. By exploiting the fact that the conformational stabilization of a protein is altered upon ligand binding due to specific interactions, and using an array of selectively chosen ligand analogs, one can quantify the contribution individual interactions have on specificity. We have used ligand-induced stability as a basis to dissect the interaction between glutaredoxin-3 (Grx3) and one of its native substrates, the tripeptide glutathione. Taking advantage of the fact that Grx3 can be trapped in a covalent mixed disulfide to glutathione or to selected synthetic glutathione analogs as part of the natural catalytic cycle, individual contributions to binding of specific molecular groups can be quantified by changes in ligand-induced stability. These changes in conformational stability are interpreted in terms of interaction energies (i.e. specificity) of the particular groups present on the ligand analog. Our results illustrate that although Grx3 recognizes glutathione predominantly through independent and additive ionic interactions at the N- and C-terminal of glutathione, van der Waals interactions from the unique gamma-glutamate moiety of glutathione also play an important role. This study places us closer to understanding the complex task of accommodating multiple substrate specificities in proteins of the thioredoxin superfamily and underscores the general applicability of ligand-induced stability to probe substrate specificity.  相似文献   

13.
Protein-protein binding and signaling pathways are important fields of biomedical science. Here we report simple optical methods for the determination of the equilibrium binding constant K(d) of protein-protein interactions as well as quantitative studies of biochemical cascades. The techniques are based on steady-state and time-resolved fluorescence resonance energy transfer (FRET) between ECFP and Venus-YFP fused to proteins of the SUMO family. Using FRET has several advantages over conventional free-solution techniques such as isothermal titration calorimetry (ITC): Concentrations are determined accurately by absorbance, highly sensitive binding signals enable the analysis of small quantities, and assays are compatible with multi-well plate format. Most importantly, our FRET-based techniques enable us to measure the effect of other molecules on the binding of two proteins of interest, which is not straightforward with other approaches. These assays provide powerful tools for the study of competitive biochemical cascades and the extent to which drug candidates modify protein interactions.  相似文献   

14.
Many anticancer, antibiotic, and antiviral drugs exert their primary biological effects by reversibly interacting with nucleic acids. Therefore, these biomolecules represent a major target in drug development strategies designed to produce next generation therapeutics for diseases such as cancer. In order to improve the clinical efficacy of existing drugs and also to design new ones it is necessary to understand the molecular basis of drug-DNA interactions in structural, thermodynamic, and kinetic detail. The past decade has witnessed an increase in the number of rigorous biophysical studies of drug-DNA systems and considerable knowledge has been gained in the energetics of these binding reactions. This is, in part, due to the increased availability of high-sensitivity calorimetric techniques, which have allowed the thermodynamics of drug-DNA interactions to be probed directly and accurately. The focus of this article is to review thermodynamic approaches to examining drug-DNA recognition. Specifically, an overview of a recently developed method of analysis that dissects the binding free energy of these reactions into five component terms is presented. The results of applying this analysis to the DNA binding interactions of both minor groove drugs and intercalators are discussed. The solvent water plays a key role in nucleic acid structure and consequently in the binding of ligands to these biomolecules. Any rational approach to DNA-targeted drug design requires an understanding of how water participates in recognition and binding events. Recent studies examining hydration changes that accompany DNA binding by intercalators will be reviewed. Finally some aspects of cooperativity in drug-DNA interactions are described and the importance of considering cooperative effects when examining these reactions is highlighted.  相似文献   

15.
16.
Novel fluorescence approaches to investigate ligand recognition and structure of G protein-coupled receptors in native membranes have been developed. These methods combine the biosynthetic incorporation of unnatural fluorescent amino acids at known sites in receptors with the technique of fluorescence energy transfer for distance measurement. This permits one to fix the ligand in space and to define the structure of the receptor in a model of ligand–receptor interactions. Subdomains of ligand binding sites on NK1 and NK2 receptors were also characterized using environment-sensitive fluorophores and the techniques of collisional quenching and anisotropy. Antagonists and agonists have different binding sites on NK1 and NK2.  相似文献   

17.
Summary Novel fluorescence approaches to investigate ligand recognition and structure of G protein-coupled receptors in native membranes have been developed. These methods combine the biosynthetic incorporation of unnatural fluorescent amino acids at known sites in receptors with the technique of fluorescence energy transfer for distance measurement. This permits one to fix the ligand in space and to define the structure of the receptor in a model of ligand-receptor interactions. Subdomains of ligand binding sites on NK1 and NK2 receptors were also characterized using environment-sensitive fluorophores and the techniques of collisional quenching and anisotropy. Antagonists and agonists have different binding sites on NK1 and NK2.  相似文献   

18.
R Brimacombe 《Biochimie》1991,73(7-8):927-936
Over the last two decades essentially three different approaches have been used to study the topography of RNA-protein interactions in the ribosome. These are: (a) the analysis of binding sites for individual ribosomal proteins or groups of proteins on the RNA; (b) the determination of protein footprint sites on the RNA by the application of higher order structure analytical techniques; and (c) the localisation of RNA-protein cross-link sites on the RNA. This article compares and contrasts the types of data that the three different approaches provide, and gives a brief and highly simplified summary of the results that have been obtained for both the 16S and 23S ribosomal RNA from E coli.  相似文献   

19.
In order to fully understand biological processes it is essential to identify interactions in protein complexes. There are several techniques available to study this type of interactions, such as yeast two-hybrid screens, affinity chromatography, and coimmunoprecipitation. We propose a novel strategy to identify protein-protein interactions, comprised of first detecting the interactions using ProteinChips and SELDI-TOF MS, followed by the isolation of the interacting proteins through affinity beads and RP-HPLC and finally identifying the proteins using nano-LC MS/MS. The advantages of this new strategy are that the primary high-throughput screening of samples can be performed with small amounts of sample, no specific antibody is needed and the proteins represented on the SELDI-TOF MS spectra can be identified with high confidence. Furthermore, the method is faster and less labor-intensive than other current approaches. Using this novel method, we isolated and identified the interactions of two mouse plasma proteins, mannose binding lectin C and properdin, with GlialCAM, a type 1 transmembrane glycoprotein that belongs to the Ig superfamily.  相似文献   

20.
It is known that binding free energy of protein-protein interaction is mainly contributed by hot spot (high energy) interface residues. Here, we investigate the characteristics of hot spots by examining inter-atomic sidechain-sidechain interactions using a dataset of 296 alanine-mutated interface residues. Results show that hot spots participate in strong and energetically favorable sidechain-sidechain interactions. Subsequently, we describe a novel, yet simple 'hot spot' prediction model with an accuracy that is similar to many available approaches. The model is also shown to efficiently distinguish specific protein-protein interactions from non-specific interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号