首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Rho guanosine triphosphatases (Rho GTPases) family, including RhoA, plays an important role in angiotensin II (Ang II)-mediated cardiac hypertrophy. Farnesylpyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are vital for activation of RhoA. The present study was designed to investigate the role of FPPS in myocardial hypertrophy mediated with Ang II. First, we demonstrated that FPPS expression was elevated both in cultured neonatal cardiomyocytes (NCMs) following Ang II treatment and in the hypertrophic myocardium of 18-week-old spontaneously hypertensive rats (SHRs). Then, the importance of FPPS was assessed by RNA interference (RNAi) against FPPS in NCMs. Successful FPPS silencing in NCMs completely inhibited the hypertrophy marker genes of β-myosin heavy chain (β-MHC) and brain natriuretic peptide (BNP), as well as cell surface area. Furthermore, FPPS knockdown prevented elevated RhoA activity compared with non-silenced controls. Similarly, increased-phosphorylation of p-38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK) by Ang II was attenuated. In vivo gene transfer also attenuated hypertrophic responses as indexed by left ventricular weight/body weight (LVW/BW), heart weight/body weight (HW/BW), and echocardiography, as well as expression of β-MHC and BNP mRNA in SHRs. In conclusion, FPPS with RhoA associated p-38 and JNK MAPK signaling might play an important role in Ang II-induced cardiac hypertrophy.  相似文献   

2.
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.  相似文献   

3.
目的:研究金丝桃苷(hyperoside, HYP)对主动脉弓缩窄所致小鼠病理性心肌肥厚的保护作用及其机制。方法:将32只C57BL/6J小鼠随机分为4组:假手术(Sham)组、单纯给药(HYP)组、主动脉弓缩窄(TAC)组及主动脉弓缩窄给药(TAC+HYP)组,每组8只。采用经典的主动脉弓缩窄术建立小鼠压力负荷型心肌肥厚模型。TAC术后4周,超声心动图仪检测心脏功能;左心室导管监测血流动力学指标;分离心脏、肺脏和胫骨计算心/体比、肺/体比和心/胫比,HE染色计算心肌细胞平均横截面积,Masson染色观察心肌纤维化程度,试剂盒检测心肌组织中SOD的活性和MDA的含量;DHE荧光探针检测心肌组织ROS生成量;Western blotting检测SIRT3、NOX 4、Collagen-1和Collagen-3蛋白表达,实时定量PCR检测SIRT3、ANP、α-MHC、β-MHC的m RNA表达情况。结果:与Sham组相比,TAC组小鼠的LVPWD值增加,LVSP和LVEDP值上升,LVEF、LVFS、E/A和±dp/dtmax值均降低;HM/BW、LW/BW和HW/TL值升高,心肌细胞横截面积增加;心肌组织胶原沉积加重;肥厚基因ANP的m RNA表达水平显著上升,α-MHC/β-MHC的比例倒置;心肌组织SOD活性降低,MDA和ROS生成量增加;SIRT3信号表达明显降低(均P<0.05)。给予HYP药物处理后,TAC+HYP组小鼠的心脏功能、血流动力学改变、心肌细胞肥厚程度、心肌组织纤维化和氧化应激水平均明显改善,并且心肌细胞SIRT3信号表达也显著增强(均P<0.05)。结论:HYP能够通过减轻心肌组织氧化应激损伤,抑制心肌纤维化进展,改善压力负荷引起的病理性心肌肥厚,且其作用机制可能与激活SIRT3信号有关。  相似文献   

4.
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is one of the Ca2+/calmodulin-dependent protein kinases. Activated eEF2K phosphorylates its specific substrate, eEF2, which results in inhibition of protein translation. We have recently shown that protein expression of eEF2K was specifically increased in hypertrophied left ventricles (LV) from spontaneously hypertensive rats (SHR). However, phosphorylation state of eEF2K and eEF2 in hypertrophied LV is not determined. In the present study, we examined expression and phosphorylation of eEF2K and eEF2 in LV from SHR as well as the pressure overload (transverse aortic constriction: TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy model. In LV from TAC mice, eEF2K expression was increased as determined by Western blotting. In LV from TAC mice and SHR, eEF2K phosphorylation at Ser366 (inactive site) was decreased. Consistently, eEF2 phosphorylation at Thr56 was increased. In LV from ISO rats, while eEF2K phosphorylation was decreased, eEF2K expression and eEF2 phosphorylation were not different as determined by Western blotting. In the results obtained from immunohistochemistry, however, total eEF2K and phosphorylated eEF2 (at Thr56) localized to cardiomyocytes were increased in LV cardiomyocytes from ISO rats. Accordingly, the increased expression and the decreased phosphorylation of eEF2K and the increased phosphorylation of eEF2 in hypertrophied LV were common to all models in this study. The present results thus suggest that cardiac hypertrophy may be regulated at least partly via eEF2K-eEF2 signaling pathway.  相似文献   

5.
Loss of cardiomyocytes by apoptosis is proposed to cause heart failure. Angiotensin II (ANG II), an important neurohormonal factor during heart failure, can induce cardiomyocyte apoptosis. Inasmuch as hexarelin has been reported to have protective effects in this process, we examined whether hexarelin can prevent cardiomyocytes from ANG II-induced cell death. Cultured cardiomyocytes from neonatal rats were stimulated with ANG II. Apoptosis was evaluated using fluorescence microscopy, TdT-mediated dUTP nick-end labeling (TUNEL) method, flow cytometry, DNA laddering, and analysis of cell viability by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). It was found that incubation with 0.1 micromol/l ANG II for 48 h increased cardiomyocyte apoptosis. Administration of 0.1 micromol/l hexarelin significantly decreased this ANG II-induced apoptosis and DNA fragmentation and increased myocyte viability. To further investigate the underlying mechanisms, caspase-3 activity assay and mRNA expression of Bax, Bcl-2, and growth hormone secretagogue receptor (GHS-R; the supposed hexarelin binding site) were examined. GHS-R mRNA was abundantly expressed in cardiomyocytes and was upregulated after administration of hexarelin. These results suggest that hexarelin abates cardiomyocytes from ANG II-induced apoptosis possibly via inhibiting the increased caspase-3 activity and Bax expression induced by ANG II and by increasing the expression of Bcl-2, which is depressed by ANG II. Whether the upregulated expression of GHS-R induced by hexarelin is associated with this antiapoptotic effect deserves further investigation.  相似文献   

6.
Chronic pressure overload leads to an increase in the size, i.e. hypertrophy, of cardiomyocytes in the heart. However, the molecular mechanisms underlying this hypertrophy are not understood. Insulin-like growth factor-I (IGF-I) synthesized locally in the heart is known to be associated with the hypertrophic process. So far, however, cardiac IGF-I gene expression in the widely used rat model system has only been shown to be increased when the hypertrophy induced by pressure-overload was already established. Therefore, the question of whether IGF-I serves as an initiating or early-enhancing factor for the cardiac hypertrophy remains unanswered. Here, cardiac hypertension and hypertrophy were rapidly induced in the rat by complete constriction of the abdominal aorta between the origins of the renal arteries. Carotid arterial systolic blood pressure remained unchanged in sham rats but increased rapidly in the pressure-overloaded constricted rats with a sustained hypertension established by 3 days. Hypertrophy of left ventricular (LV) cardiomyocytes in constricted rats also occurred by 3 days. However, this hypertrophy was preceded by increases in LV IGF-I mRNA and protein which occurred within 1 day. These results support the hypothesis that cardiac-synthesized IGF-I is an initiating or early-enhancing factor for hypertrophy of LV cardiomyocytes.  相似文献   

7.
8.
ANG II stimulates phospholipase D (PLD) activity and growth of vascular smooth muscle cells (VSMC). The atypical protein kinase C-zeta (PKCzeta) plays a central role in the regulation of cell survival and proliferation. This study was conducted to determine the relationship between ANG II-induced activation of PKCzeta and PLD and their implication in VSMC adhesion, spreading, and hypertrophy. ANG II stimulated PKCzeta activity with maximal activation at 30 s followed by a decline in its activity to 45% above basal at 5 min. Inhibition of PKCzeta activity with a myristoylated pseudosubstrate peptide or overexpression of a kinase-inactive form of PKCzeta decreased ANG II-induced PLD activity. Moreover, depletion of PKCzeta with selective antisense oligonucleotides also decreased ANG II-induced PLD activity. Interaction between PLD2 and PKCzeta in VSMC was detected by coimmunoprecipitation. ANG II-induced PLD activity was inhibited by the primary alcohol n-butanol but not the tertiary alcohol t-butanol. The functional significance of PKCzeta and PLD2 in VSMC adhesion, spreading, and hypertrophy was investigated. Inhibition of PKCzeta and PLD2 activity or expression attenuated VSMC adhesion to collagen I and ANG II-induced cell spreading and hypertrophy. These results demonstrate that ANG II-induced PLD activation is regulated by PKCzeta and suggest a crucial role of PKCzeta-dependent PLD2 in VSMC functions such as adhesion, spreading, and hypertrophy, which are associated with the pathogenesis of atherosclerosis and malignant hypertension.  相似文献   

9.
In addition to well-documented vascular growth-promoting effects, ANG II exerts proapoptotic effects that are poorly understood. IGF-1 is a potent survival factor for human vascular smooth muscle cells (hVSMC), and its antiapoptotic effects are mediated via the IGF-1 receptor (IGF-1R) through a signaling pathway involving phosphatidylinositol 3-kinase and Akt. We hypothesized that there would be cross talk between ANG II proapoptotic effects and IGF-1 survival effects in hVSMC. To investigate ANG II-induced apoptosis and the potential involvement of IGF-1, we exposed quiescent and nonquiescent hVSMC to ANG II. ANG II induced apoptosis only in nonquiescent cells but stimulated hypertrophy in quiescent cells. ANG II-induced apoptosis was characterized by marked inhibition of Akt phosphorylation and stimulation of membrane Fas ligand (FasL) expression, caspase-8 activation, and a reduction in soluble FasL expression. Adenovirally mediated overexpression of Akt rescued hVSMC from ANG II-induced apoptosis. IGF-1R activation increased Akt phosphorylation and soluble FasL expression, and these effects were completely blocked by coincubating hVSMC with ANG II. In conclusion, ANG II-induced apoptosis of hVSMC is characterized by marked inhibition of Akt phosphorylation and stimulation of an extrinsic cell death signaling pathway via upregulation of membrane FasL expression, caspase-8 activation, and a reduction in soluble FasL expression. Furthermore, ANG II antagonizes the antiapoptotic effect of IGF-1 by blocking its ability to increase Akt phosphorylation and soluble FasL. These findings provide novel insights into ANG II-induced apoptotic signaling and have significant implication for understanding ANG II-induced remodeling in hypertension and atherosclerosis.  相似文献   

10.
Angiotensin II (Ang II) is known to induce cardiomyocyte hypertrophy by activating the Ang II type 1 (AT1) receptor. Some studies have demonstrated that the autoantibodies against angiotensin AT1 receptor (AT1-AAs) cause functional effects, which is similar to those observed for the natural agonist Ang II. In this study, we investigated the effects of AT1-AAs on cardiomyocytes' structure and function. Male Wistar rats were immunized with synthetic peptides corresponding to the second extracellular loop of AT1 receptor and Freund's adjuvant. The titers of AT1-AAs in rat serum were detected by enzyme-linked immunosorbent assay every week. Hemodynamic analysis and heart weight (HW) indices were measured on the 4th and 8th months after initial immunization, respectively. Cultured neonatal rat cardiomyocytes were used to observe the hypertrophic effects of AT1-AAs. Results showed that systolic blood pressure and heart rate were significantly increased, the titers of AT1-AAs were also increased after 4 weeks of initial immunization. Compared with control group, the HW/body weight (BW) and left ventricular weight/BW of immunized rats were increased significantly and cardiac function was enhanced compensatively. The cultured neonatal rat cardiomyocytes respond to AT1-AAs stimulation with increased (3)H-leucine incorporation and cell surface area in a dose-dependent manner. These results suggest that the AT1-AAs have an agonist effect similar to Ang II in hypertrophy of cardiomyocytes in vivo and in vitro. AT1-AAs are involved in the pathogenesis of cardiovascular diseases and hypertension.  相似文献   

11.
Fang L  Moore XL  Gao XM  Dart AM  Lim YL  Du XJ 《Life sciences》2007,80(23):2154-2160
Mitofusin-2 (Mfn2) suppresses smooth muscle cell proliferation through inhibition of the Ras-extracellular signal-regulated kinases (ERK1/2) pathway. Since the ERK1/2 pathway is implicated in mediating hypertrophic signaling, we studied the changes in Mfn2 in cardiac hypertrophy using in vitro and in vivo models. Phenylephrine was used to induce hypertrophy in neonatal rat ventricular myocytes (NRVMs). In vivo hypertrophy models included spontaneously hypertensive rats (SHR), pressure-overload hypertrophy by transverse aortic constriction (TAC), hypertrophy of non-infarcted myocardium following myocardial infarction (MI), and cardiomyopathy due to cardiac-restricted overexpression of beta(2)-adrenergic receptors (beta(2)-TG). We determined hypertrophic parameters and analysed expression of atrial natriuretic peptide (ANP) and Mfn2 by real-time PCR. Phosphorylated-ERK1/2 (phospho-ERK) was measured by Western blot. Mfn2 was downregulated in phenylephrine treated NRCMs (by approximately 40%), hypertrophied hearts from SHR (by approximately 80%), mice with TAC (at 1 and 3 weeks, by approximately 50%), and beta(2)-TG mice (by approximately 20%). However, Mfn2 was not downregulated in hypertrophied hearts with 15 weeks of TAC, nor in hypertrophied non-infarcted myocardium following MI. phospho-ERK1/2 was increased in hypertrophied myocardium at 1 week post-TAC, but not in non-infarcted myocardium after MI, indicating that downregulated Mfn2 may be accompanied by an increase of phospho-ERK1/2. This study shows, for the first time, downregulated Mfn2 expression in hypertrophied hearts, which depends on the etiology and time course of hypertrophy. Further study is required to examine the causal relationship between Mfn2 and cardiac hypertrophy.  相似文献   

12.
Cardiac hypertrophy is the main cause of heart failure and sudden death in patients. But the pathogenesis is unclear. Angiotensin II may contribute to cardiac hypertrophy in response to pressure overload. In angiotensin II-treated cardiomyocytes, there is a larger cross-sectional area, more apoptosis cells, and a reduction of irisin expression. An increase in P62, an autophagy flux index, as well as LC3II, were observed in cardiomyocytes after angiotensin II-induced injury. Surprisely, irisin supplementation increased LC3II expression and decreased P62 expression, consisted of results of RFP-GFP-LC3B adenovirus transfection, and reduced cardiomyocyte apoptosis, meanwhile, the protection of irisin was reversed by the autophagy inhibitor 3-methyladenine. In animal experiments, overexpression of irisin reduced cardiomyocyte apoptosis and alleviated myocardial hypertrophy caused by pressure overload. The above results indicate that irisin-induced protective autophagy and alleviated the apoptosis signaling pathway in cardiomyocytes, consequently reducing cardiomyocyte apoptosis after angiotensin II-induced injury. Hence, increasing irisin expression may be a new way to improve cardiac function and quality of life in patients with cardiac hypertrophy.  相似文献   

13.
Cardiac hypertrophy and failure were induced in male Wistar rats by daily administration of 5 mg/kg isoproterenol for three weeks. Age-matched animals were used as normal control. To estimate the degree of hypertrophy, the wet heart weight (HW) to body weight (BW) ratio (HW/BW) was used as an index of the myocardial enlargement. By the 7th day of the treatment, the HW/BW ratio was increased to 4.24, as compared with the control value of 3.11. In this early stage of cardiomyopathy, the structure was characterized with small necrotic foci, enlarged myofilaments and swollen mitochondria. The electrical activity showed broadened action potentials with an elevated plateau phase, and increased membrane resistance and time constant. The amplitude of the twitch contractions was elevated. Continuing the treatment of the animals with catecholamine caused a decompensated heart failure by the 21st day. In this late stage, many and large necrotic foci could be observed in the myocardium. The mitochondria were fragmented, and the resistance of the sarcolemma decreased, and the electrical and contractile activity suppressed. The results indicate that an electrically and structurally compensated cardiac hypertrophy model can be produced by a short-term treatment of the animals with isoproterenol, while a long-term treatment causes a decompensated heart failure.  相似文献   

14.
Reactive oxygen species (ROS) and Ca(2+) signals are closely associated with the pathogenesis of cardiac hypertrophy. However, the cause and effect of the two signals in cardiac hypertrophy remain to be clarified. We extend our recent report by investigating a potential interaction between ROS and Ca(2+) signals utilizing in vitro and in vivo angiotensin II (ANG II)-induced cardiac hypertrophy models. ANG II-induced initial Ca(2+) transients mediated by inositol trisphosphate (IP(3)) triggered initial ROS production in adult rat cardiomyocytes. The ROS generated by activation of the NAD(P)H oxidase complex via Rac1 in concert with Ca(2+) activates ADP-ribosyl cyclase to generate cyclic ADP-ribose (cADPR). This messenger-mediated Ca(2+) signal further augments ROS production, since 2,2'-dihydroxyazobenzene, an ADP-ribosyl cyclase inhibitor, or 8-Br-cADPR, an antagonistic analog of cADPR, abolished further ROS production. Data from short hairpin RNA (shRNA)-mediated knockdown of Akt1 and p47(phox) demonstrated that Akt1 is the upstream key molecule responsible for the initiation of Ca(2+) signal that activates p47(phox) to generate ROS in cardiomyocytes. Nuclear translocation of nuclear factor of activated T-cell in cardiomyocytes was significantly suppressed by treatment with NAD(P)H oxidase inhibitors as well as by shRNA against Akt1 and p47(phox). Our results suggest that in cardiomyocytes Ca(2+) and ROS messengers generated by ANG II amplify the initial signals in a cooperative manner, thereby leading to cardiac hypertrophy.  相似文献   

15.
Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3′-UTR, but not to the mutated 3′-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity.  相似文献   

16.
Baba T  Kanda T  Kobayashi I 《Life sciences》2000,67(5):587-597
Renin angiotensin system contributes to activation of circulating endothelin in congestive heart failure. To investigate the effects of angiotensin II receptor antagonist and angiotensin converting enzyme inhibitors (ACEI) on the levels of endothelin-1 (ET-1), we administered orally angiotensin II type 1 receptor (AT1) antagonist, L-158,809 (ATA) (6, 1.2 and 0.12 mg/kg/day), enalapril (1 mg/kg/day) and captopril (7.5 mg/kg/day) for 14 days to mice with viral myocarditis, beginning 7 days after encephalomyocarditis virus (500 pfu/mouse) inoculation. Plasma ET-1, cardiac ET-1, heart weight (HW) and HW/ body weight (BW) ratio were examined and compared with infected untreated mice. Moreover, the HW (mg) and HW/BW (x 10(-3)) ratio were significantly (P<0.05) reduced in mice treated with ATA and ACEIs in comparison with infected control. ACEIs and higher dosed of ATA reduced myofiber hypertrophy. Both of plasma and cardiac ET-1 proteins were significantly elevated in infected control compared with uninfected normal mice. Plasma ET-1 was significantly (P<0.01) reduced in mice with three different concentrations of ATA but were not decreased in mice with captopril or enalapril compared with infected control. The expression of endothelin-1 mRNA was significantly reduced in mice with ATA in comparison with infected untreated mice by competitive RT-PCR. ATA reduced ET-1 protein and mRNA in the myocardium of mice with myocarditis, improving congestive heart failure and myofiber hypertrophy. We suggest the effect of ATA on the reduction of endothelin has a different pathway from angiotensin converting inhibitor and that ATA seems to be a useful agents for congestive heart failure due to viral myocarditis.  相似文献   

17.
ANG-(1-7) improves the function of the remodeling heart. Although this peptide is generated directly within the myocardium, the effects of ANG-(1-7) on cardiac fibroblasts that play a critical role in cardiac remodeling are largely unknown. We tested the hypothesis that specific binding of ANG-(1-7) to cardiac fibroblasts regulates cellular functions that are involved in cardiac remodeling. 125I-labeled ANG-(1-7) binding assays identified specific binding sites of ANG-(1-7) on adult rat cardiac fibroblasts (ARCFs) with an affinity of 11.3 nM and a density of 131 fmol/mg protein. At nanomolar concentrations, ANG-(1-7) interacted with specific sites that were distinct from ANG II type 1 and type 2 receptors without increasing cytosolic Ca2+ concentration. At these concentrations, ANG-(1-7) had inhibitory effects on collagen synthesis as assessed by [3H]proline incorporation and decreased mRNA expression of growth factors in ARCFs. These effects of ANG-(1-7) contrasted with effects of ANG II. Pretreatment of ARCFs with ANG-(1-7) inhibited ANG II-induced increases in collagen synthesis and in mRNA expression of growth factors, including endothelin-1 and leukemia inhibitory factor. ANG-(1-7) pretreatment also inhibited the stimulatory effects of conditioned medium from ANG II-treated ARCFs on [3H]leucine incorporation and atrial natriuretic factor mRNA expression, markers of hypertrophy, in cardiomyocytes. Thus ANG-(1-7) interacted with specific receptors on ARCFs to exert potential antifibrotic and antitrophic effects that could reverse ANG II effects. These results suggest that ANG-(1-7) may play an important role in the heart in regulating cardiac remodeling.  相似文献   

18.
Left ventricular (LV) remodeling after myocardial infarction (MI) results from hypertrophy of myocytes and activation of fibroblasts induced, in part, by ligand stimulation of the ANG II type 1 receptor (AT1R). The purpose of the present study was to explore the specific role for activation of the AT 1a R subtype in post-MI remodeling and whether gender differences exist in the patterns of remodeling in wild-type and AT 1a R knockout (KO) mice. AT 1a R-KO mice and wild-type littermates underwent coronary ligation to induce MI or sham procedures; echocardiography and hemodynamic evaluation were performed 6 wk later, and LV tissue was harvested for infarct size determination, morphometric measurements, and gene expression analysis. Survival and infarct size were similar among all male and female wild-type and AT 1a R-KO mice. Hemodynamic indexes were also similar except for lower systolic blood pressure in the AT 1a R-KO mice compared with wild-type mice. Male and female wild-type and male AT 1a R-KO mice developed similar increases in LV chamber size, LV mass corrected for body weight (LV/BW), and myocyte cross-sectional area (CSA). However, female AT 1a R-KO mice demonstrated no increase in LV/BW and myocyte CSA post-MI compared with shams. Both male and female wild-type mice demonstrated higher atrial natriuretic peptide (ANP) levels after MI, with female wild types being significantly greater than males. However, male and female AT 1a R-KO mice developed no increase in ANP gene expression with MI despite an increase in LV mass and myocyte size in males. These data support that gender-specific patterns of LV and myocyte hypertrophy exist after MI in mice with a disrupted AT 1a R gene, and suggest that myocyte hypertrophy post-MI in females relies, in part, on activation of the AT 1a R. Further work is necessary to explore the potential mechanisms underlying these gender-based differences.  相似文献   

19.
目的:探讨miRNAs(miR199a-5P、miR206、miR133a-3P、miR499-5P)在异丙肾上腺素(ISO)诱导大鼠心肌肥厚模型组中的表达变化;并运用生物信息学方法分析相关的主要信号通路及分子机制。方法:将16只SD雄性大鼠随机分为2组:对照组和ISO模型组,模型组给予ISO(1 mg/kg)诱导心肌肥厚模型,对照组给予等量生理盐水,均采用背部皮下多点注射。连续给药10 d后采用超声心动图测量舒张期室间隔厚度(IVSd)、舒张期左室后壁厚度(LVPWd)、左室舒张末期内径(LVDd)及心脏收缩功能(EF%);称量心脏重量(HW)、大鼠体重(BW),并计算心脏/体重比(HW/BW);心肌组织HE染色,Image J分析软件测量心肌细胞表面积;RT-qPCR检测大鼠心肌组织中4种miRNAs的表达情况。运用Targetscan、miRDB、miRwalk 数据库预测大鼠4种miRNAs可能的靶基因,FunRich软件分析预测靶基因相关的信号通路。结果:与正常组相比,模型组IVSd、LVPWd增厚,LV增大,EF%明显降低;HW、HW/BW增加;模型组心肌细胞体积明显增大,排列紊乱,细胞表面积增加;模型组miR199a-5P、miR206表达上调(P<0.05);miR133a-3P、miR499-5P表达下调(P<0.05)。应用生物信息学预测4种miRNAs的靶基因可能参与心肌肥厚相关的信号通路主要有:VEGF/VEGFR信号通路、ErbB受体信号通路等。结论:ISO诱导心肌肥厚导致miRNAs表达的改变,生物信息学预测4种miRNAs参与心肌肥厚相关的靶基因及其主要信号通路,这些研究为心肌肥厚的调控机制及其防治措施提供了新思路。  相似文献   

20.
To clarify the mechanism of cardiac hypertrophy in carnitine-deficient JVS mice, we studied the possible role of catecholamine metabolism. Cardiac hypertrophy occurs 2 weeks after birth. The turnover of norepinephrine in the ventricles of JVS mice at 2 weeks was 3 times that of control, but it was not different from control at 5 days when the heart weight was not changed. To evaluate the accelerated norepinephrine turnover, we examined the effects of catecholamine metabolism inhibitors (alpha-methyltyrosine and 6-hydroxydopamine) and catecholamine receptor blockades (propranolol, prazosin and yohimbine) on the ratio of heart weight to body weight (HW/BW) and on the augmented expression of atrial natriuretic peptide (ANP) and the down-regulated carnitine deficiency-associated gene expressed in ventricle (CDV-1). The HW/BW ratio in JVS mice treated with catecholamine metabolism inhibitors and receptor blockades was significantly lower than in JVS mice without treatment, but still higher than in controls treated with each drug and in JVS mice treated with carnitine. The HW/BW ratio of JVS mice with propranolol was not significantly different from that of JVS mice treated with catecholamine metabolism inhibitors and was significantly lower than that of JVS mice treated with prazosin and yohimbine. Northern blot analysis showed that the altered expression of ANP and CDV-1 was not corrected in the ventricles of JVS mice treated with any of the drugs except carnitine. These results suggest that the catecholamine metabolism accelerated in JVS mice ventricles at 2 weeks is not the major cause of cardiac hypertrophy, but probably promotes cardiac hypertrophy mainly through the beta-adrenergic signaling pathway. The aberrant gene expression of ANP and CDV-1 found in JVS mice seems to be independent of catecholamine metabolism, and mediated primarily by the systemic carnitine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号