首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Edaravone, a novel antioxidant, acts by trapping hydroxyl radicals, quenching active oxygen and so on. Its cardioprotective activity against experimental autoimmune myocarditis (EAM) was reported. Nevertheless, it remains to be determined whether edaravone protects against cardiac remodelling in dilated cardiomyopathy (DCM). The present study was undertaken to assess whether edaravone attenuates myocardial fibrosis, and examine the effect of edaravone on cardiac function in rats with DCM after EAM. Rat model of EAM was prepared by injection with porcine cardiac myosin 28 days after immunization, we administered edaravone intraperitoneally at 3 and 10 mg/kg/day to rats for 28 days. The results were compared with vehicle-treated rats with DCM. Cardiac function, by haemodynamic and echocardiographic study and histopathology were performed. Left ventricular (LV) expression of NADPH oxidase subunits (p47(phox), p67(phox), gp91(phox) and Nox4), fibrosis markers (TGF-β(1) and OPN), endoplasmic reticulum (ER) stress markers (GRP78 and GADD 153) and apoptosis markers (cytochrome C and caspase-3) were measured by Western blotting. Edaravone-treated DCM rats showed better cardiac function compared with those of the vehicle-treated rats. In addition, LV expressions of NADPH oxidase subunits levels were significantly down-regulated in edaravone-treated rats. Furthermore, the number of collagen-III positive cells in the myocardium of edaravone-treated rats was lower compared with those of the vehicle-treated rats. Our results suggest that edaravone ameliorated the progression of DCM by modulating oxidative and ER stress-mediated myocardial apoptosis and fibrosis.  相似文献   

2.
Some ANG II receptor type 1 (AT(1)) antagonists are reported to inhibit proinflammatory cytokine production in vitro and in vivo. However, the effects of the drugs on autoimmune diseases are unknown. We tested the hypothesis that olmesartan, a novel AT(1) antagonist, ameliorated experimental autoimmune myocarditis (EAM) in rats attributed to the suppression of inflammatory cytokines as well as to the immunomodulatory action of the heart. We administered olmesartan orally at does of 1, 3, and 10 mg.kg(-1).day(-1) to rats with EAM for 3 wk. The results showed that olmesartan decreased blood pressure significantly compared with the untreated group and markedly reduced the severity of myocarditis associated with the decrease of myocardial macrophage, CD4(+), and CD8(+) T-cell expression by comparison of heart wt-to-body wt ratios, pericardial effusion scores, and macroscopic and microscopic scores. Numbers of myocardial interleukin-1beta (IL-1beta)-positive-staining cells (obtained by immunohistochemistry) and quantities of IL-1beta expression (obtained by Western blotting) were significantly lower in rats with EAM given olmesartan treatment compared with rats given vehicle. Cardiac myosin-specific, delayed-type hypersensitivity was significantly lower in olmesartan-treated rats than in control rats. The cytotoxic activities of lymphocytes in rats with EAM treated with olmesartan were reduced compared with untreated control rats. In vitro study showed that both olmesartan and its active metabolite RNH-6270 suppressed IL-1beta production in U-937 cells and cultured myocytes. Olmesartan ameliorates acute EAM in rats. The cardioprotection of olmesartan may be due to suppression of inflammatory cytokines as well as to suppressive effects of cytotoxic myocardial injury in addition to hemodynamic modifications.  相似文献   

3.
Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT(1)R antagonist protects against experimental autoimmune myocarditis (EAM) by suppression of oxidative stress, endoplasmic reticulum (ER) stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day) or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL)-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ)] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT(1)R, NADPH oxidase subunits (p47phox, p67phox, gp91phox) and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.  相似文献   

4.
Carvedilol, a new beta-blocker with antioxidant properties, has been shown to be cardioprotective in experimental models of myocardial damage. We investigated whether carvedilol protects against experimental autoimmune myocarditis (EAM) because of its suppression of inflammatory cytokines and its antioxidant properties. We orally administered a vehicle, various doses of carvedilol, racemic carvedilol [R(+)-carvedilol, an enantiomer of carvedilol without beta-blocking activity], metoprolol, or propranolol to rats with EAM induced by porcine myosin for 3 wk. Echocardiographic study showed that the three beta-blockers, except R(+)-carvedilol, suppressed left ventricular fractional shortening and decreased heart rates to the same extent. Carvedilol and R(+)-carvedilol, but not metoprolol or propranolol, markedly reduced the severity of myocarditis at the two different doses and suppressed thickening of the left ventricular posterior wall in rats with EAM. Only carvedilol suppressed myocardial mRNA expression of inflammatory cytokines and IL-1beta protein expression in myocarditis. In addition, carvedilol and R(+)-carvedilol decreased myocardial protein carbonyl contents and myocardial thiobarbituric acid-reactive substance products in rats with EAM. The in vitro study showed that carvedilol and R(+)-carvedilol suppressed IL-1beta production in LPS-stimulated U937 cells and that carvedilol and R(+)-carvedilol, but not metoprolol or propranolol, suppressed thiobarbituric acid-reactive substance products in myocardial membrane challenged by oxidative stress. It was also confirmed that probucol, an antioxidant, ameliorated EAM in vivo. Carvedilol protects against acute EAM in rats, and the superior cardioprotective effect of carvedilol compared with metoprolol and propranolol may be due to suppression of inflammatory cytokines associated with the antioxidant properties in addition to the hemodynamic modifications.  相似文献   

5.
In order to test the hypothesis that treatment with quercetin at a dose of 10 mg/kg protects from the progression of experimental autoimmune myocarditis (EAM) to dilated cardiomyopathy (DCM), we have used the rat model of EAM induced by porcine cardiac myosin. Our results identified that the post-myocarditis rats suffered from elevated endoplasmic reticulum (ER) stress and adverse cardiac remodelling in the form of myocardial fibrosis, whereas the rats treated with quercetin have been protected from these changes as evidenced by the decreased myocardial levels of ER stress and fibrosis markers when compared with the vehicle-treated DCM rats. In addition, the myocardial dimensions and cardiac function were preserved significantly in the quercetin-treated rats in comparison with the DCM rats treated with vehicle alone. Interestingly, the rats treated with quercetin showed significant suppression of the myocardial endothelin-1 and also the mitogen activated protein kinases (MAPK) suggesting that the protection offered by quercetin treatment against progression of EAM involves the modulation of MAPK signalling cascade. Collectively, the present study provides data to support the role of quercetin in protecting the hearts of the rats with post myocarditis DCM.  相似文献   

6.
Using cultured bovine aortic endothelial cells, the effects of MCI-186, a radical scavenger, were studied on arachidonic acid metabolism and on the cell injury caused by 15-HPETE. MCI-186 at 3 X 10(-5) M enhanced prostacyclin production in the intact endothelial cells without affecting phospholipase A2. When endothelial cell homogenates were used as an enzyme source, it was found that MCI-186 stimulated the conversion of arachidonic acid to prostacyclin like phenol, perhaps by trapping OH radicals produced in the process of the conversion of PGG2 to PGH2. On the other hand, MCI-186 was found to inhibit lipoxygenase metabolism of arachidonic acid in cell free homogenates of rat basophilic leukemia cells. The lipoxygenase inhibition caused by 3 X 10(-5) M MCI-186 was almost equivalent to that caused by 3 X 10(-6) M BW 755C. MCI-186 remarkably protected against endothelial cell damage caused by 15-HPETE. 3 X 10(-5) M of 15-HPETE caused endothelial cell death in about 60% of the population: however, pretreatment of the cells with 10(-5) M of MCI-186 or concomitant addition of 10(-5) M of MCI-186 with 15-HPETE to the cultures prevented the cell death completely. These results suggest that MCI-186 may become an unique anti-ischemic drug.  相似文献   

7.
We investigated whether carvedilol protects against experimental autoimmune myocarditis (EAM) attributing to antioxidant properties. Acute EAM was induced by porcine cardiac myosin in Lewis rats. We orally administered a vehicle, various dosages of carvedilol, metoprolol, or propranolol to rats with EAM for 3 weeks. Three beta-blockers decreased heart rates to the same extent. Carvedilol, but not metoprolol or propranolol, markedly reduced the severity of myocarditis at the two different dosages. Only carvedilol decreased the myocardial protein carbonyl contents, and also decreased the myocardial thiobarbituric acid reactive substance products in rats with EAM. Accordingly, carvedilol protects against acute EAM in rats, and this superior cardioprotective effect of carvedilol to metoprolol and propranolol may be due to the antioxidant properties in addition to the hemodynamic modifications.  相似文献   

8.
Excess amount of cytokine produced by inflammatory stimuli contributes to the progression of myocardial damage in myocarditis. Some angiotensin II receptor type 1 antagonists are reported to inhibit proinflammatory cytokine production in vitro and in vivo. We tested the hypothesis that olmesartan, a novel angiotensin II receptor type 1 antagonist, ameliorated experimental autoimmune myocarditis (EAM) in rats attributing to the suppression of inflammatory cytokines in the heart. We orally administered olmesartan 1, 3, and 10 mg/kg/day to rats with EAM for 3 weeks. The results showed that olmesartan decreased blood pressure significantly compared with the untreated group, but markedly reduced the severity of myocarditis by comparing the heart weight/body weight ratio, pericardial effusion scores, macroscopic scores and microscopic scores. Myocardial interleukin (IL)- 1beta expression by western blotting and IL-1beta-positive staining cells by immunohistochemistry were significantly lower in rats with EAM given olmesartan treatment compared with those of rats given vehicle. We conclude that Olmesartan ameliorates acute EAM in rats. The cardioprotection of olmesartan may be due to suppression of inflammatory cytokines dependent of the hemodynamic modifications.  相似文献   

9.
Angiotensin-converting enzyme-2 (ACE-2) is a homolog of ACE that preferentially forms angiotensin-(ANG)-1-7 from angiotensin II (ANG II). We investigated the cardioprotective effects of telmisartan, a well-known angiotensin receptor blockers (ARBs) against experimental autoimmune myocarditis (EAM). EAM was induced in Lewis rats by immunization with porcine cardiac myosin. The rats were divided into two groups and treated with telmisartan (10 mg/kg/day) or vehicle for 21 days. Myocardial functional parameters were significantly improved by treatment with telmisartan compared with vehicle-treated rats. Telmisartan lowered myocardial protein expressions of NADPH oxidase subunits 3-nitrotyrosine, p47phox, p67 phox, Nox-4 and superoxide production significantly than vehicle-treated rats. In contrast myocardial protein levels of ACE-2, ANG 1-7 mas receptor were upregulated in the telmisartan treated group compared with those of vehicle-treated rats. The myocardial protein expression levels of tumor necrosis factor receptor (TNFR)-associated factor (TRAF)-2, C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP) 78 were decreased in the telmisartan treated rats compared with those of vehicle-treated rats. In addition, telmisartan treatment significantly decreased the protein expression levels of phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, phospho-ERK and phospho (MAPK) activated protein kinase-2 than with those of vehicle-treated rats. Moreover, telmisartan significantly decreased the production of proinflammatory cytokines, myocardial apoptotic markers and caspase-3 positive cells compared with those of vehicle-treated rats. Therefore, we suggest that telmisartan was beneficial protection against heart failure in rats, at least in part by suppressing inflammation, oxidative stress, ER stress as well as signaling pathways through the modulation of ACE2/ANG1-7/Mas receptor axis.  相似文献   

10.
Intraperitoneal injection of hydroxyl radical scavenger dimethyl sulfoxide (DMSO) to rats (1 g/kg body weight, daily for 3 weeks) did not change their behaviour in the open field and had no effect on blood pressure and heart and respiratory rates. DMSO injection before stress prevented changes usually induced by chronic (three-week) emotional-painful stress. DMSO increased superoxide dismutase activity in brain homogenates and serum. It is suggested that hydroxyl radicals (OH) play the key role in the realization of stress-induced effects and that molecular mechanisms of anti-stress effects of DMSO include both scavenging of hydroxyl radicals and activation of superoxide dismutase.  相似文献   

11.
Reperfusion after a period of ischemia is associated with the formation of reactive oxygen species (ROS) and Ca2+ overload resulting in the opening of a nonspecific pore in the inner membrane of the mitochondria, called the mitochondrial permeability transition pore (PTP), leading to cell damage. Although endogenous antioxidants are activated because of oxidative stress following ischemia, their levels are not high enough to prevent reperfusion injury. Hence there is always a need for exogenous supplement of antioxidants, especially after acute ischemia. Here we demonstrated the effects of the antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186) in preventing reperfusion injury of the heart by inhibition of PTP opening. Ischemia (30 min) by left coronary artery (LCA) occlusion and reperfusion (120 min) in Wistar rats after pretreatment with MCI-186 (10 mg/kg iv) infusion starting from 30 min before LCA occlusion resulted in 1) less area of myocardial infarction (19.2% vs. 61.6%), 2) well-maintained myocardial ATP content (P < 0.03 vs. control), 3) decreased mitochondrial swelling and reduced cytochrome c release, 4) increased expression of BCl-2, 5) lower prevalence of apoptotic cells (14.3% vs. 2.9%), and 6) reduced DNA fragmentation in the MCI-186-treated group. These cytoprotective effects of MCI-186 were inhibited on opening PTP before MCI-186 treatment with the PTP activators lonidamine (10 mg/kg iv) or atractyloside (5 mg/kg iv) but failed to inhibit the protective effects exerted by another antioxidant, allopurinol, suggesting that the PTP inhibiting property is specific for MCI-186. These results demonstrate that the radical scavenger MCI-186, by inhibiting the opening of the PTP, prevents necrosis and cytochrome c release and hence pathological apoptosis.  相似文献   

12.
Curcumin is used anecdotally as an herb in traditional Indian and Chinese medicine. In the present study, the effects and possible mechanism of curcumin in experimental autoimmune myocarditis (EAM) rats were further investigated. They were divided randomly into a treatment and vehicle group, and orally administrated curcumin (50 mg/kg/day) and 1% gum arabic, respectively, for 3 weeks after myosin injection. The results showed that curcumin significantly suppressed the myocardial protein expression of inducible nitric oxide synthase (iNOS) and the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. In addition, curcumin significantly decreased myocardial endoplasmic reticulum (ER) stress signaling proteins and improved cardiac function. Furthermore, curcumin significantly decreased the key regulators or inducers of apoptosis. In summary, our results indicate that curcumin has the potential to protect EAM by modulating cardiac oxidative and ER stress-mediated apoptosis, and provides a novel therapeutic strategy for autoimmune myocarditis.  相似文献   

13.
《Free radical research》2013,47(10):1223-1231
Abstract

Curcumin is used anecdotally as an herb in traditional Indian and Chinese medicine. In the present study, the effects and possible mechanism of curcumin in experimental autoimmune myocarditis (EAM) rats were further investigated. They were divided randomly into a treatment and vehicle group, and orally administrated curcumin (50 mg/kg/day) and 1% gum arabic, respectively, for 3 weeks after myosin injection. The results showed that curcumin significantly suppressed the myocardial protein expression of inducible nitric oxide synthase (iNOS) and the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. In addition, curcumin significantly decreased myocardial endoplasmic reticulum (ER) stress signaling proteins and improved cardiac function. Furthermore, curcumin significantly decreased the key regulators or inducers of apoptosis. In summary, our results indicate that curcumin has the potential to protect EAM by modulating cardiac oxidative and ER stress-mediated apoptosis, and provides a novel therapeutic strategy for autoimmune myocarditis.  相似文献   

14.
Reactions of 3-methyl-1-phenyl-2-pyrazoline-5-one (MCI-186) with hypochlorous acid and superoxide were analysed by spectrophotometry and mass spectrometry. The results were applied to the neutrophil system to evaluate the scavenging activity of neutrophil-derived active oxygen species by MCI-186. MCI-186 reacted rapidly with hypochlorous acid (1 x 10(6) M(-1)s(-1)) to form a chlorinated intermediate, followed by a slow conversion to a new spectrum. MCI-186 consumed 3 moles of hypochlorous acid and did not react with superoxide. The newly synthesized fluorescence probes, 2-[6-(4'-amino)-phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) and 2-[6-(4'-hydroxy)phenoxy-3H-anthen-3-on-9-yl]benzoic acid (HPF) successfully detected neutrophil-derived active oxygens (Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 2003; 278: 3170-3175). The rate constants for the reaction of hypochlorous acid with MCI-186 and fluorescence probes was in the order of MCI-186 > APF > HPF. Fluorescence due to the oxidation of APF and HPF was observed with the stimulated neutrophils. The result that the intensity from APF oxidation was higher than that from HPF oxidation is compatible with reports that APF selectively reacts with hypochlorous acid. Fluorescence due to oxidation of both APF and HPF decreased when the reactions were carried out in the presence of a fluorescence probe and MCI-186 in a dose-dependent manner. These results indicate that MCI-186 effectively scavenges neutrophil-derived hypochlorous acid and other active oxygens.  相似文献   

15.
The level of lipid peroxidation reflects the degree of free radical-induced oxidative damage in brain tissue of the elderly. We examined the effects of Manda, a product prepared by yeast fermentation of several fruits and black sugar, on lipid peroxidation in the senescent rat brain as model of aging. Senescent rats were provided with a diet containing 50 g/100 g Manda for 8 days, supplemented on day 8 with an intragastric administration of Manda (6.0 g/kg body wt.) twice daily. The hydroxyl radical scavenging activity was generated by the FeSO4-H2O2 system and analyzed by electron spin resonance spectrometry. Using this method, the addition of Manda (2.88 mg/ml) to brain homogenates of adult rats (0.06 mg/ml) had an additive inhibitory effect on lipid peroxidation compared with control adult rats not treated with Manda. Incubation of brain homogenates with Manda for 2 h and 3 h, significantly inhibited the increase in lipid peroxides (malondialdehydes and 4-hydroxyalkenals) levels in aged rats due to auto-oxidation. In addition, oral administration of Manda significantly suppressed the age-related increase in lipid peroxidation in the hippocampus and striatum, although such change was not observed in the cerebral cortex. Although Manda contains trace level of -tocopherol, the level of -tocopherol in Manda did no correlate with its antioxidant effect. Our results suggest that Manda protects against age-dependent oxidative neuronal damage caused by oxidative stress and that this protective effect may be due, in part, to its scavenging activity against free radicals.  相似文献   

16.
Erythropoietin (EPO) has been known to have cytoprotective effects on several types of tissues, presumably through modulation of apoptosis and inflammation. The effect of EPO on myocardial inflammation, however, has not yet been clarified. We investigated the cardioprotective effects of EPO in rats with experimental autoimmune myocarditis (EAM). Seven-week-old Lewis rats immunized with cardiac myosin were treated either with EPO or vehicle and were examined on day 22. EPO attenuated the functional and histological severity of EAM along with suppression of mRNAs of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 in the hearts as well as a reduction of apoptotic cardiomyocytes. The EPO receptor (EPO-R) was upregulated in the myocardium of EAM compared with that of healthy rats. These results may suggest that EPO ameliorated the progression of EAM by modulating myocardial inflammation and apoptosis.  相似文献   

17.
Tang Q  Huang J  Qian H  Chen L  Wang T  Wang H  Shen D  Wu H  Xiong R 《Life sciences》2007,80(7):601-608
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are known to inhibit cholesterol biosynthesis and prevent inflammation and oxidative stress. To explore the effects of atorvastatin on inflammatory progression and major cardiac electrophysiological changes in myocarditis, we used an animal model of experimental autoimmune myocarditis (EAM). In this model, BALB/c mice were treated with atorvastatin and we evaluated the levels of inflammation markers and currents of ionic channels that contribute to the duration of action potential (APD) of ventricular myocytes. We demonstrated that atorvastatin treatment attenuated inflammatory infiltration and suppressed the increase in TNF-alpha and IFN-gamma levels in EAM mouse hearts. In the whole-cell patch-clamp experiment, ventricular cardiomyocyte APD was prolonged in EAM group, and atorvastatin blocked this change. We further found that atorvastatin attenuated the significant decrease in outward potassium currents in EAM myocytes. Our results suggested that atorvastatin may ameliorate EAM progression by reducing inflammatory cytokine level. Atorvastatin exerted the antiarrhythmic effects by selectively affecting cardiomyocyte ion channel activity and therefore improves myocardial repolarization.  相似文献   

18.
《Free radical research》2013,47(9):1082-1090
Abstract

Experimental autoimmune myocarditis (EAM) is mediated by myocardial infiltration by myosin-specific T-cells secreting inflammatory cytokines. In this study, rat models of EAM were prepared by injection with porcine cardiac myosin. One week after immunization, edaravone was administered intraperitoneally at 3 or 10 mg/kg/day to rats for 2 weeks. Cardiac function was measured by haemodynamic and echocardiographic studies and TUNEL assay was performed. Left ventricular (LV) expression of NADPH oxidase sub-units (p47phox and p67phox), pro-inflammatory cytokines (TNF-α), endoplasmic reticulum (ER) stress signalling proteins (GRP78, caspase-12 and GADD153) and mitogen-activated protein kinase (MAPK) family proteins (phospho-p38 MAPK and phospho-JNK) were measured by western blotting. Edaravone improved LV function in a dose-dependent manner. Central venous pressure was significantly low and LV ejection fraction and fractional shortening was significantly high in edaravone groups compared with those in the vehicle group. In addition, edaravone treatment down-regulated LV expressions of p47phox, TNF-α, GADD153, phospho-p38 MAPK and phospho-JNK. Furthermore, the LV expressions of p67phox, GRP78, caspase-12 and TUNEL-positive cells of rats with EAM treated with edaravone were significantly low compared with those of the vehicle group. These findings suggest that edaravone ameliorated the progression of EAM by inhibiting oxidative and ER stress and, subsequently, cardiac apoptosis.  相似文献   

19.
Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin) (n = 19) and those untreated (n = 22). Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibitor had no effect on antigen-induced spleen cell proliferation. Administration of the DPP-4 inhibitor remarkably suppressed cardiac fibrosis and reduced inflammatory cytokine gene expression in EAM mice. Thus, the agents present in DPP-4 inhibitors may be useful to treat and/or prevent clinical myocarditis.  相似文献   

20.
Myocardial protection of MCI-186 in rabbit ischemia-reperfusion   总被引:6,自引:0,他引:6  
Wu TW  Zeng LH  Wu J  Fung KP 《Life sciences》2002,71(19):2249-2255
We observed that 3-methyl-1-1phenyl-2-pyrazolin-5-one (MCI-186), a newly-developed free radical scavenger, attenuated necrosis in the in vivo rabbit hearts upon reperfusion after prolonged ischemia. In rabbits undergoing 1 hour ligation of the anterior ventricular coronary artery, a single bolus injection of MCI-186 (1.5 mg/kg) was introduced into the post-ischemic heart immediately before 4 hour reperfusion. Compared to negligible necrosis in sham-operated control animals and 33.81 +/- 13.50% necrosis in the area at risk for the saline control group (n = 8), the MCI-186 - treated group (n = 8) had a necrosis of 13.27 +/- 4.60% (p < 0.05 vs saline control group). The pressure-rate index had a slight decrease in MCI-186 treated group compared to the control group (p > 0.05). However, the blood levels of malondialdehyde (MDA) in MCI-186 treated group (2.08 +/- 0.23 microM) was significantly smaller than that of 2.65 +/- 0.31 microM in control animals (p < 0.01), while sham control had an average MDA level of 1.91 +/- 0.40 microM, with p > 0.05 relative to that in the MCI-186 treated group. These data support our contention that MCI-186 reduces reperfusion injury in perfused hearts with prolonged ischemia and the mechanism for the in vivo efficacy of MCI-186 is predominantly related to its antioxidant activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号