首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the endoplasmic reticulum chaperone calnexin with N-glycosylation mutants of a polytopic membrane glycoprotein, the human erythrocyte anion exchanger (AE1), was characterized by cell-free translation and in transfected HEK293 cells, followed by co-immunoprecipitation using anti-calnexin antibody. AE1 contains 12-14 transmembrane segments and has a single site of N-glycosylation at Asn-642 in the fourth extracytosolic loop. This site was mutated (N642D) to create a nonglycosylated protein. Calnexin showed a preferential interaction with N-glycosylated AE1 relative to nonglycosylated AE1 both in vitro and in vivo. This interaction could be blocked by inhibition of glucosidases I and II with castanospermine. Calnexin had access to novel N-glycosylated sites created in other extracytosolic loops in AE1 by site-directed or insertional mutagenesis. The interaction with AE1 was enhanced when multiple sites were introduced into the same loop or into two different loops. An association of calnexin with truncated versions of N-glycosylated AE1 was detected after release of the nascent chains from ribosomes with puromycin. The results show that the interaction of calnexin with the polytopic membrane glycoprotein AE1 was dependent on the presence but not the location of the oligosaccharide. Furthermore, calnexin was associated with AE1 after release of AE1 from the translocation machinery.  相似文献   

2.
3.
Multiple topological orientations of the carboxyl-terminal half of P-glycoprotein have been observed. One orientation is consistent with the hydropathy-predicted model and contains six transmembrane (TM)-spanning regions. In another orientation, the cytoplasmic-predicted loop between TM8 and TM9 is extracellular and glycosylated. In support of this "alternative" topology, TM8 was previously established to function as a signal-anchor sequence to insert with its amino-terminal end in the cytoplasm and the carboxyl-terminal end in the extracytoplasmic space. However, it is unclear how downstream TM segments fold in the membrane when TM8 functions as a signal-anchor sequence. Here, we created several chimeric Pgp molecules to examine the membrane insertion of TM segments 9 and 10 using a cell-free system. We found that TM9 functions as a stop-transfer sequence when following the signal-anchor sequence, TM8. However, the stop-transfer activity of TM9 depends on the presence of TM10. In the absence of TM10, TM9 partially translocated across the membrane into the endoplasmic reticulum lumen. In contrast, TM9 efficiently stopped the translocation event of the nascent chain in the presence of TM10. Our results suggest that the membrane insertion of TM8 and TM9 establishes the extracellular loop between TM8 and TM9. Formation of this loop apparently involves the interactions between Pgp TM segments, which facilitate proper folding of the Pgp carboxyl-terminal half.  相似文献   

4.
We have investigated the topogenic rules of multispanning membrane proteins using erythrocyte band 3. Here, the fine structural requirements for the correct disposition of its second transmembrane segment (TM2) were assessed. We made fusion proteins where TM1 and the loop sequence preceding TM2 were changed and fused to prolactin. They were expressed in a cell-free system supplemented with rough microsomal membrane, and their topologies on the membrane were assessed by protease sensitivity and N-glycosylation. TM1 was demonstrated to be a signal-anchor sequence that mediates translocation of the downstream portion, and thus TM2 should be responsible to halt the translocation to acquire TM topology. When the loop between TM1 and TM2 was elongated, however, TM2 was readily translocated through the membrane and not integrated. For the membrane integration of TM2, TM2 must be in close proximity to TM1. The TM1 can be replaced with another signal-anchor sequence with a long hydrophobic segment but not with a signal sequence with shorter hydrophobic stretch. The length of the hydrophobic segment affected final topology of TM2. We concluded that the two TM segments work synergistically within the translocon to acquire the correct topology and that the length of the preceding signal sequence is critical for stable transmembrane assembly of TM2. We propose that direct interaction among the TM segments is one of the critical factors for the transmembrane topogenesis of multispanning membrane proteins.  相似文献   

5.
Based on homology with GLUT1-5, we have isolated a cDNA for a novel glucose transporter, GLUTX1. This cDNA encodes a protein of 478 amino acids that shows between 29 and 32% identity with rat GLUT1-5 and 32-36% identity with plant and bacterial hexose transporters. Unlike GLUT1-5, GLUTX1 has a short extracellular loop between transmembrane domain (TM) 1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. When expressed in Xenopus oocytes, GLUTX1 showed strong transport activity only after suppression of a dileucine internalization motif present in the amino-terminal region. Transport activity was inhibited by cytochalasin B and partly competed by D-fructose and D-galactose. The Michaelis-Menten constant for glucose was approximately 2 mM. When translated in reticulocytes lysates, GLUTX1 migrates as a 35-kDa protein that becomes glycosylated in the presence of microsomal membranes. Western blot analysis of GLUTX1 transiently expressed in HEK293T cells revealed a diffuse band with a molecular mass of 37-50 kDa that could be converted to a approximately 35-kDa polypeptide following enzymatic deglycosylation. Immunofluorescence microscopy detection of GLUTX1 transfected into HEK293T cells showed an intracellular staining. Mutation of the dileucine internalization motif induced expression of GLUTX1 at the cell surface. GLUTX1 mRNA was detected in testis, hypothalamus, cerebellum, brainstem, hippocampus, and adrenal gland. We hypothesize that, in a similar fashion to GLUT4, in vivo cell surface expression of GLUTX1 may be inducible by a hormonal or other stimulus.  相似文献   

6.
S Moir  J Perreault    L Poulin 《Journal of virology》1996,70(11):8019-8028
Evidence from both structural and functional studies of the CD4 molecule suggests that several domains, including the transmembrane (TM) domain and the adjoining extracellular region (D4-TM linker), contribute to the post-gp12O-binding events leading to human immunodeficiency virus-mediated membrane fusion. To investigate such a role in syncytium formation and cell-free infectivity, we generated several deletion and substitution mutations in the TM and D4-TM linker regions of the CD4 molecule. We found that while the TM domain of CD4 was dispensable for cell-cell and virus-cell interactions, modifications in the D4-TM linker led to perturbations in both processes. Deletion of the five amino acid residues linking D4 to the TM domain resulted in a delayed and reduced capacity to form syncytia, whereas replacement of the residues with the heterologous sequence from the CD8 molecule restored the kinetic profile to wild-type CD4 levels. On the other hand, both mutants of the CD4 D4-TM linker demonstrated delayed cell-free human immunodeficiency virus type 1 infectivity profiles. The defective fusion capacity may be linked to structural perturbations identified with anti-CD4 monoclonal antibodies in the D1-D2 interface and D3 domain of the deletion mutant yet absent in D1 and D4. While all cells were found to bind comparable levels of gp120, both D4-TM linker mutants appeared to induce a decrease in the V3 loop exposure of bound gp120. This underexposure may explain the delays in cell-free infectivities observed for both of these mutants. Together, these findings confirm a role for regions of the CD4 molecule located outside D1 in post-gp120-binding events and suggest that the D4-TM interface contributes to the conformational changes that direct the fusion process.  相似文献   

7.
The human equilibrative nucleoside transporter hENT1, the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for the cellular uptake of physiologic nucleosides, including adenosine, and many anti-cancer nucleoside drugs. We have produced recombinant hENT1 in Xenopus oocytes and used native and engineered N-glycosylation sites in combination with immunological approaches to experimentally define the membrane architecture of this prototypic nucleoside transporter. hENT1 (456 amino acid residues) is shown to contain 11 transmembrane helical segments with an amino terminus that is intracellular and a carboxyl terminus that is extracellular. Transmembrane helices are linked by short hydrophilic regions, except for a large glycosylated extracellular loop between transmembrane helices 1 and 2 and a large central cytoplasmic loop between transmembrane helices 6 and 7. Sequence analyses suggest that this membrane topology is common to all mammalian, insect, nematode, protozoan, yeast, and plant members of the ENT protein family.  相似文献   

8.
We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the alpha and beta subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61alpha and Sec61beta during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the "stage" of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide.  相似文献   

9.
Podoplanin is a transmembrane glycoprotein that is upregulated in cancer and was reported to induce an epithelial-mesenchymal transition (EMT) in MDCK cells. The promotion of EMT was dependent on podoplanin binding to ERM (ezrin, radixin, moesin) proteins through its cytoplasmic (CT) domain, which led to RhoA-associated kinase (ROCK)-dependent ERM phosphorylation. Using detergent-resistant membrane (DRM) assays, as well as transmembrane (TM) interactions and ganglioside GM1 binding, we present evidence supporting the localization of podoplanin in raft platforms important for cell signalling. Podoplanin mutant constructs harbouring a heterologous TM region or lacking the CT tail were unable to associate with DRMs, stimulate ERM phosphorylation and promote EMT or cell migration. Similar effects were observed upon disruption of a GXXXG motif within the TM domain, which is involved in podoplanin self-assembly. In contrast, deletion of the extracellular (EC) domain did not affect podoplanin DRM association. Together, these data suggest that both the CT and TM domains are required for podoplanin localization in raft platforms, and that this association appears to be necessary for podoplanin-mediated EMT and cell migration.  相似文献   

10.
Neurotransmitter transporters play a major role in achieving low concentrations of their respective transmitter in the synaptic cleft. The GABA transporter GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins which possess 12 putative transmembrane domains and three N-glycosylation sites in the extracellular loop between transmembrane domain 3 and 4. To study the significance of N-glycosylation, green fluorescence protein (GFP)-tagged wild type GAT1 (NNN) and N-glycosylation defective mutants (DDQ, DGN, DDN and DDG) were expressed in CHO cells. Compared with the wild type, all N-glycosylation mutants showed strongly reduced protein stability and trafficking to the plasma membrane, which however were not affected by 1-deoxymannojirimycin (dMM). This indicates that N-glycosylation, but not terminal trimming of the N-glycans is involved in the attainment of a correctly folded and stable conformation of GAT1. All N-glycosylation mutants were expressed on the plasma membrane, but they displayed markedly reduced GABA-uptake activity. Also, inhibition of oligosaccharide processing by dMM led to reduction of this activity. Further experiments showed that both N-glycosylation mutations and dMM reduced the V(max) value, while not increasing the K(m) value for GABA uptake. Electrical measurements revealed that the reduced transport activity can be partially attributed to a reduced apparent affinity for extracellular Na+ and slowed kinetics of the transport cycle. This indicates that N-glycans, in particular their terminal trimming, are important for the GABA-uptake activity of GAT1. They play a regulatory role in the GABA translocation by affecting the affinity and the reaction steps associated with the sodium ion binding.  相似文献   

11.
AE1 (anion exchanger 1) and protein 4.2 associate in a protein complex bridging the erythrocyte membrane and cytoskeleton; disruption of the complex results in unstable erythrocytes and HS (hereditary spherocytosis). Three HS mutations (E40K, G130R and P327R) in cdAE1 (the cytoplasmic domain of AE1) occur with deficiencies of protein 4.2. The interaction of wild-type AE1, AE1HS mutants, mdEA1 (the membrane domain of AE1), kAE1 (the kidney isoform of AE1) and AE1SAO (Southeast Asian ovalocytosis AE1) with protein 4.2 was examined in transfected HEK (human embryonic kidney)-293 cells. The HS mutants had wild-type expression levels and plasma-membrane localization. Protein 4.2 expression was not dependent on AE1. Protein 4.2 was localized throughout the cytoplasm and co-localized at the plasma membrane with the HS mutants mdAE1 and kAE1, but at the ER (endoplasmic reticulum) with AE1SAO. Pull-down assays revealed diminished levels of protein 4.2 associated with the HS mutants relative to AE1. The mdAE1 did not bind protein 4.2, whereas kAE1 and AE1SAO bound wild-type amounts of protein 4.2. A protein 4.2 fatty acylation mutant, G2A/C173A, had decreased plasma-membrane localization compared with wild-type protein 4.2, and co-expression with AE1 enhanced its plasma-membrane localization. Subcellular fractionation showed the majority of wild-type and G2A/C173A protein 4.2 was associated with the cytoskeleton of HEK-293 cells. The present study shows that cytoplasmic HS mutants cause impaired binding of protein 4.2 to AE1, leaving protein 4.2 susceptible to loss during erythrocyte development.  相似文献   

12.
In eukaryotic cellular proteins, protein N-myristoylation has been recognized as a protein modification that occurs mainly on cytoplasmic or nucleoplasmic proteins. In this study, to search for a eukaryotic N-myristoylated transmembrane protein, the susceptibility of the N-terminus of several G-protein-coupled receptors (GPCRs) to protein N-myristoylation was evaluated by in vitro and in vivo metabolic labeling. It was found that the N-terminal 10 residues of B96Bom, a Bombyx mori GPCR, efficiently directed the protein N-myristoylation. Analysis of a tumor necrosis factor (TNF) fusion protein with the N-terminal 90 residues of B96Bom at its N-terminus revealed that (a) transmembrane domain 1 of B96Bom functioned as a type I signal anchor sequence, (b) the N-myristoylated N-terminal domain (58 residues) was translocated across the membrane, and (c) two N-glycosylation motifs located in this domain were efficiently N-glycosylated. In addition, when Ala4 in the N-myristoylation motif of B96Bom90-TNF, Met-Gly-Gln-Ala-Ala-Thr(1-6), was replaced with Asn to generate a new N-glycosylation motif, Asn-Ala-Thr(4-6), efficient N-glycosylation was observed on this newly introduced N-glycosylation site in the expressed protein. These results indicate that the N-myristoylated N-terminus of B96Bom is translocated across the membrane and exposed to the extracellular surface. To our knowledge, this is the first report showing that a eukaryotic transmembrane protein can be N-myristoylated and that the N-myristoylated N-terminus of the protein can be translocated across the membrane.  相似文献   

13.
The human chloride/bicarbonate AE1 (anion exchanger) is a dimeric glycoprotein expressed in the red blood cell membrane,and expressed as an N-terminal (Delta1-65) truncated form, kAE1(kidney AE1), in the basolateral membrane of alpha-intercalated cells in the distal nephron. Mutations in AE1 can cause SAO (Southeast Asian ovalocytosis) or dRTA (distal renal tubular acidosis), an inherited kidney disease resulting in impaired acid secretion. The dominant SAO mutation (Delta400-408) that results in an inactive transporter and altered erythrocyte shape occurs in manydRTA families, but does not itself result in dRTA. Compound heterozygotes of four dRTA mutations (R602H, G701D, DeltaV850 and A858D) with SAO exhibit dRTA and abnormal red blood cell properties. Co-expression of kAE1 and kAE1 SAO with the dRTAmutantswas studied in polarized epithelial MDCK(Madin-Darbycanine kidney) cells. Like SAO, the G701D and DeltaV850 mutants were predominantly retained intracellularly, whereas the R602H and A858D mutants could traffic to the basolateral membrane. When co-expressed in transfected cells, kAE1 WT (wild-type)and kAE1 SAO could interact with the dRTA mutants. MDCK cells co-expressing kAE1 SAO with kAE1 WT, kAE1 R602Hor kAE1 A858D showed a decrease in cell-surface expression of the co-expressed proteins. When co-expressed, kAE1 WT colocalized with the kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D mutants at the basolateral membrane, whereaskAE1 SAO co-localized with kAE1 WT, kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D in MDCK cells. The decrease in cell-surface expression of the dRTAmutants as a result of the interaction with kAE1 SAO would account for the impaired expression of functional kAE1 at the basolateral membrane of alpha-intercalated cells, resulting in dRTA in compound heterozygous patients.  相似文献   

14.
Gao J  Xia L  Lu M  Zhang B  Chen Y  Xu R  Wang L 《Molecular biology reports》2012,39(9):8883-8889
In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.  相似文献   

15.
Banerjee A  Swaan PW 《Biochemistry》2006,45(3):943-953
The membrane topology of the human apical sodium-dependent bile acid transporter (hASBT) remains unresolved. Whereas N-glycosylation analysis favors a 7 transmembrane (TM) model, membrane insertion scanning supports a 9TM topology. In order to resolve this controversy, we used dual label epitope insertion to systematically examine the topological framework of hASBT. Two distinct epitopes, hemagglutinin (HA) and FLAG, were individually inserted by inverted PCR mutagenesis at strategic positions along the hASBT sequence. Cell surface biotinylation and immunoblotting with epitope-specific and anti-hASBT antibodies confirmed expression and trafficking of the mutants to the plasma membrane. Confocal microscopy confirmed membrane localization of epitope-tagged hASBT in saponin-treated (permeabilized) and nonpermeabilized transfected COS-1 and MDCK cells. Tags at positions 116, 120, 186, 270, and 284 were accessible to the epitope antibodies in nonpermeabilized cells, indicative of the extracellular localization of loops 1 (99-130), 2 (180-191), and 3 (253-287). The corresponding positions in the 9TM model were predicted to be intracellular or membrane bound. Epitope mutants at residues 56, 92, 156, and 221 were only detected after treatment with saponin, indicating the intracellular localizations of loops 1 (50-73), 2 (150-160), 3 (215-227) as predicted by a 7TM model. Our results also confirm the exofacial and cytosolic localization of N- and C-terminal tails, respectively. With the exception of constructs inserted at position 120, epitope mutants displayed active, sodium-dependent taurocholate uptake. Consequently, our study strongly supports a 7TM topology for hASBT and refutes the previously proposed 9TM model.  相似文献   

16.
17.
The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.  相似文献   

18.
To better define the mechanism of membrane protein insertion into the membrane of the endoplasmic reticulum, we measured the kinetics of translocation across microsomal membranes of the N-terminal lumenal tail and the lumenal domain following the second transmembrane segment (TM2) in the multispanning mouse protein Cig30. In the wild-type protein, the N-terminal tail translocates across the membrane before the downstream lumenal domain. Addition of positively charged residues to the N-terminal tail dramatically slows down its translocation and allows the downstream lumenal domain to translocate at the same time as or even before the N-tail. When TM2 is deleted, or when the loop between TM1 and TM2 is lengthened, addition of positively charged residues to the N-terminal tail causes TM1 to adopt an orientation with its N-terminal end in the cytoplasm. We suggest that the topology of the TM1-TM2 region of Cig30 depends on a competition between TM1 and TM2 such that the transmembrane segment that inserts first into the ER membrane determines the final topology.  相似文献   

19.
20.
The mammalian Na(+)/H(+) exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein. It regulates intracellular pH by removing a single intracellular H(+) in exchange for one extracellular Na(+). The membrane domain of NHE1 comprises the 500 N-terminal amino acids and is made of 12 transmembrane segments. The extracellular loops of the transmembrane segments are thought to be involved in cation coordination and inhibitor sensitivity. We have characterized the structure and function of amino acids 278-291 representing extracellular loop 4. When mutated to Cys, residues F277, F280, N282 and E284 of EL4 were sensitive to mutation and reaction with MTSET inhibiting NHE1 activity. In addition they were found to be accessible to extracellular applied MTSET. A peptide of the amino acids of EL4 was mostly unstructured suggesting that it does not provide a rigid structured link between TM VII and TM VIII. Our results suggest that EL4 makes an extension upward from TM VII to make up part of the mouth of the NHE1 protein and is involved in cation selectivity or coordination. EL4 provides a flexible link to TM VIII which may either allow movement of TM VII or allow TM VIII to not be adjacent to TM VII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号