首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ishii S  Mogi Y 《Plant physiology》1983,72(3):641-644
Cellulase C1, cellulase Cx, and xylanase were isolated and purified from a cellulase preparation of Trichoderma viride as enzymes effective in the isolation of protoplasts from oat leaves. Pectin lyase which is specific for methyl-galacturonide linkages was also found to be a useful enzyme for the isolation of protoplasts from the tissues. This suggested that pectic polysaccharides with a high degree of esterification may play an important role in cell walls of Gramineae. It was necessary to use the mixture of cellulase C1, cellulase Cx, xylanase, and pectin lyase for the rapid isolation of protoplasts, while a small amount of protoplasts could be isolated from oat leaves by cellulase C1 plus xylanase or cellulase C1 plus pectin lyase. The mixture of four enzymes also was effective in the isolation of protoplasts from the leaves of wheat, barley, and corn.  相似文献   

2.
Callus cells of rice (Oryza sativa L.) that were actively dividing in suspension culture had lost the ability to divide during the isolation process of protoplasts. Factors influencing the protoplast viability were examined using highly purified preparations of cellulase C1, xylanase, and pectin lyase, which were essential enzymes for the isolation of protoplasts from the rice cells. The treatment of the cells with xylanase and pectin lyase, both of which are macerating enzymes, caused cellular damage. Xylanase treatment was more detrimental to the cells. Osmotic stress, cell wall fragments solubilized by xylanase, and disassembly of cortical microtubules were not the primary factors which damaged the rice cells and protoplasts. The addition of AgNO3, an inhibitor of ethylene action, to the protoplast isolation medium increased the number of colonies formed from the cultured protoplasts, although the yield of protoplasts was reduced by the addition. Superoxide radical (O2-) was generated from the cells treated with xylanase or pectin lyase. The addition of superoxide dismutase and catalase to the protoplast isolation medium resulted in a marked improvement in protoplast viability especially when the non-additive control protoplasts formed colonies with a low frequency. The addition of glutathione peroxidase and phospholipase A2, which have been known to reduce and detoxify lipid hydroperoxides in membranes, to the protoplast culture medium significantly increased the frequency of colony formation. These results suggested that some of the damage to rice protoplasts may be caused by oxygen toxicity.  相似文献   

3.
The effects of several plant cell wall polysaccharides degrading enzymes on sugar beet pulps pressing were studied. Study was carried out using three two level fractional factorial experiment designs. With only 36 experiments, the effects of the presence of pectin methylesterase, pectin lyase, polygalacturonase, cellulase, arabinase, xylanase and two rhamnogalacturonases on pressing were examined. Pectin lyase, pectin methylesterase and cellulase had a negative effect and caused the decrease of sugar beet pulp pressability. On the contrary, the presence of polygalacturonase, arabinase and xylanase increased pressing efficiency. When increasing enzymes concentrations, these effects varied and positive interactions between xylanase and polygalacturonase appeared. The presence of each of the two rhamnogalacturonases improved pressability despite their antagonistic effects. These enzymes had a complex effect and strongly interacted with polygalacturonase, arabinase and xylanase.  相似文献   

4.
The methylotrophic yeast Candida boidinii S2 was found to be able to grow on pectin or polygalacturonate as a carbon source. When cells were grown on 1% (wt/vol) pectin, C. boidinii exhibited induced levels of the pectin-depolymerizing enzymes pectin methylesterase (208 mU/mg of protein), pectin lyase (673 mU/mg), pectate lyase (673 mU/mg), and polygalacturonase (3.45 U/mg) and two methanol-metabolizing peroxisomal enzymes, alcohol oxidase (0.26 U/mg) and dihydroxyacetone synthase (94 mU/mg). The numbers of peroxisomes also increased ca. two- to threefold in cells grown on these pectic compounds (3.34 and 2.76 peroxisomes/cell for cells grown on pectin and polygalacturonate, respectively) compared to the numbers in cells grown on glucose (1.29 peroxisomes/cell). The cell density obtained with pectin increased as the degree of methyl esterification of pectic compounds increased, and it decreased in strains from which genes encoding alcohol oxidase and dihydroxyacetone synthase were deleted and in a peroxisome assembly mutant. Our study showed that methanol metabolism and peroxisome assembly play important roles in the degradation of pectin, especially in the utilization of its methyl ester moieties.  相似文献   

5.
1. Aquatic hyphomycetes degrade leaf litter in both softwater and hardwater streams. During growth on leaves, these fungi secrete an array of extracellular polysaccharidases that are differentially affected by pH. Hydrolytic enzymes exhibit acidic pH optima, whereas pectin lyases have neutral to alkaline pH optima. 2. Enzyme activities associated with microbial communities colonizing yellow poplar (Liriodendron tulipifera) leaves submerged in an acidic (pH 6.3), softwater stream were compared with those occurring in an alkaline (pH 8.2), hardwater stream. In addition to pH differences, the hardwater stream had higher nutrient concentrations and higher temperatures than the softwater stream. Conditions in the hardwater stream favoured greater microbial growth, fungal activity, rates of leaf breakdown and softening. However, activities of hydrolytic enzymes (xylanase, endocellulase, galacturonanase) were lower in the hardwater stream than in the softwater stream. Consequently, activities of these hydrolytic enzymes were not good indicators of leaf breakdown in these streams. 3. In contrast, the activities of pectin lyase were higher in the hardwater stream than in the softwater stream, corresponding to the greater rates of leaf breakdown and softening that occurred in the hardwater stream. These results support previous findings that pectin lyase is closely associated with the softening and maceration of leaf detritus and suggest that pectin degradation is a key process in the initial stages of leaf breakdown.  相似文献   

6.
Summary Protoplasts were isolated from oat (Avena sativa L.) leaves by the combination of highly purified preparations of pectin lyase, xylanase, and cellulase C1. During the enzymic isolation, superoxide radical (O 2 ) was generated from the tissues. Both the protoplasts themselves and the cell walls, exposed to enzyme treatment, produced O 2 . Hydrogen peroxide (H2O2) apparently accumulated in the reaction mixture due to the spontaneous dismutation reaction of O 2 , while a part of H2O2 may have been produced directly from cell walls by the action of enzymes. Singlet molecular oxygen (1O2) generated in the reaction mixture was detected by cholesterol oxidation in small unilamellar liposomes. It seems likely that1O2 may be generated by the peroxidase-H2O2-halide system during enzymic treatment of the leaves. The work was partially supported by the Research Project “Research and development of the improvement of bacterial and plant cells by cell fusion” of the Food and Agriculture Research and Development Association (Japan).  相似文献   

7.

Background

Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs) catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL) in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides. The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively.

Results

Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides.

Conclusions

The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of genes coding for pectin lyases. A time-course analysis revealed significant differences between the two fungal races in terms of the expression of Clpnl2 encoding for pectin lyase 2. According to the results, pectin lyases from bacteria and fungi separated early during evolution. Likewise, the enzymes from fungi and oomycetes diverged in accordance with their differing lifestyles. It is possible that the diversity and nature of the assimilatory carbon substrates processed by these organisms played a determinant role in this phenomenon.  相似文献   

8.
《Fungal biology》2014,118(5-6):507-515
Lignocellulose is the major component of plant cell walls and it represents a great source of renewable organic matter. One of lignocellulose constituents is pectin. Pectin is composed of two basic structures: a ‘smooth’ region and a ‘hairy’ region. The ‘smooth’ region (homogalacturonan) is a linear polymer of galacturonic acid residues with α-(1→4) linkages, substituted by methyl and acetyl residues. The ‘hairy’ region is more complex, containing xylogalacturonan and rhamnogalacturonans I and II. Among the enzymes which degrade pectin (pectinases) is pectin lyase (E.C. 4.2.2.10). This enzyme acts on highly esterified homogalacturonan, catalysing the cleavage of α-(1→4) glycosidic bonds between methoxylated residues of galacturonic acid by means of β-elimination, with the formation of 4,5-unsaturated products. In this work, the gene and cDNA of a pectin lyase from Penicillium purpurogenum have been sequenced, and the cDNA has been expressed in Pichia pastoris. The gene is 1334 pb long, has three introns and codes for a protein of 376 amino acid residues. The recombinant enzyme was purified to homogeneity and characterized. Pectin lyase has a molecular mass of 45 kDa as determined by SDS-PAGE. It is active on highly esterified pectin, and decreases 40 % the viscosity of pectin with a degree of esterification ≥85 %. The enzyme showed no activity on polygalacturonic acid and pectin from citrus fruit 8 % esterified. The optimum pH and temperature for the recombinant enzyme are 6.0 and 50 °C, respectively, and it is stable up to 50 °C when exposed for 3 h. A purified pectin lyase may be useful in biotechnological applications such as the food industry where the liberation of toxic methanol in pectin degradation should be avoided.  相似文献   

9.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

10.
The kinetic of thein vitro production of polygalacturonase and pectin lyase of two closely related fungi,Fusarium oxysporum f.sp.lycopersici andF. oxysporum f.sp.radicis-lycopersici, was examined under various culture conditions such as the source of carbon, the pH, and the age of cultures. Over a 5-day period, the production of these enzymes by various isolates of the sameforma specialis (f. sp.) ofF. oxysporum was not significantly different (P ≥ 0.05). However, the amount of the enzymes produced differed markedly between both f. sp. The different carbon sources added to the culture media, such as citrus pectin, apple pectin, tomato cell wall fragments, andd-galacturonic acid, proved to be higher pectinase inducible substrates than sucrose and glucose. For both fungi, polygalacturonase and pectin lyase activities were optimal at pH 5.0 and 8.0, respectively. Furthermore, pectin lyase production had a partial Ca2+ requirement in contrast to polygalacturonase production which was limited by Ca2+. In most experiments performed, the production of polygalacturonase appeared superior withF. oxysporum f.sp.radicislycopersici than withF. oxysporum f.sp.lycopersici. On the other hand, pectin lyase production ofF. oxysporum f.sp.lycopersici was approximately 10-fold greater than that byF. oxysporum f.sp.radicis-lycopersici in media supplemented withd-galacturonic acid.  相似文献   

11.
Pure cultures of ruminal bacteria characterized as using only a single forage polysaccharide (Fibrobacter succinogenes A3c, cellulolytic; Bacteroides ruminicola H2b, hemicellulolytic; Lachnospira multiparus D15d, pectinolytic) were inoculated separately and in all possible combinations into fermentation tubes containing orchard grass as the sole substrate. Fermentations were run to completion, and then cultures were analyzed for digestion of cellulose plus degradation and utilization of hemicellulose and pectin. Addition of the noncellulolytic organisms, in any combination, to the cellulolytic organism F. succinogenes had little effect on overall cellulose utilization. F. succinogenes degraded but could not utilize hemicellulose; however, when it was combined with B. ruminicola, total utilization of hemicellulose increased markedly over that by B. ruminicola alone. L. multiparus was inactive in hemicellulose digestion, alone or in any combination. Although unable to degrade and utilize purified pectin, B. ruminicola degraded and utilized considerable quantities of the forage pectin. In contrast, L. multiparus was very active against purified pectin, but had extremely limited ability to degrade and utilize pectin from the intact forage. Both degradation and utilization of forage pectin increased when F. succinogenes was combined with B. ruminicola. Sequential addition of two cultures, allowing one to complete its fermentation before adding the second, was used to study synergism between cultures on forage pectin digestion. In general, synergistic effects did not appear to be related to a particular sequence of utilization. The ability of F. succinogenes to degrade and B. ruminicola to degrade and utilize forage pectin contradicts both previous and present data obtained with purified pectin. Thus, isolation and characterization of ruminal bacteria on purified substrates may be misleading with regard to their role in the overall ruminal fermentation.  相似文献   

12.
13.
Pectin lyases cleave the internal glycosidic bonds of pectin by β-elimination, producing non-saturated galacturonic oligomers. Genetic improvement of pectin lyase-overproducing strains is still necessary to improve industrial processes based on this enzyme. In the present study hybrids were obtained by protoplast fusion between mutant pectinolytic Aspergillus flavipes and Aspergillus niveus CH-Y-1043 strains. Prototrophic segregants showed different isoenzymatic profiles and produced increased levels of pectin lyase in cultures containing lemon peel as a sole carbon source. Hybrid HZ showed an increase of 450% and 1300% in pectin lyase production compared with that of A. niveus CH-Y-1043 and A. flavipes, respectively. Pectin lyase produced by the hybrid HZ was partially purified and used for the hydrolysis of orange peel. Pectin lyase was able to hydrolyze 56% of orange peel biomass. However, addition of 2 RFU and 20 U of endo- and exo-polygalacturonase, respectively, induced the hydrolysis of 92% of orange peel solids. In conclusion HZ is a pectin lyase-overproducing hybrid with potential applications in the pectin industry.  相似文献   

14.
Using anion-exchange chromatography on different carriers and phenyl-Sepharose hydrophobic chromatography, five pectolytic enzymes were isolated from the culture liquid of a mutant strain of Aspergillus japonicus: two endo-polygalacturonases (I and II, 38 and 65 kD, pI5.6 and 3.3), pectin lyase (50 kD, pI3.8), and two pectinesterases (I and II) with similar molecular weights (46 and 47 kD) and the same pI(3.8). The pectinesterases apparently represent two isoforms of the same enzyme. All purified enzymes were homogenous according to SDS-PAGE and polyacrylamide gel-IEF, except for endo-polygalacturonase II that gave two bands on isoelectric focusing, but one band on electrophoresis. All enzymes had maximal activity in an acid medium (at pH 4.0-5.5). The pectin lyase and pectinesterase were stable at 40-50°C. The thermal stability of both endo-polygalacturonases was much lower (after 3 h of incubation at 30°C, endo-polygalacturonases I and II lost 40 and 10% of the activity, respectively). The activity of endo-polygalacturonases I and II towards polygalacturonic acid strongly depended on NaCl concentration (optimal concentration of the salt was 0.1-0.2 M); the enzymes were also capable of reducing the viscosity of pectin solution, but rather slowly. The pectin lyase had no activity towards polygalacturonic acid. The activity of the pectin lyase increased with increasing degree of methylation of pectins. Both endo-polygalacturonases demonstrated synergism with the pectinesterase during the hydrolysis of highly methylated pectin. On the contrary, in the mixture of pectin lyase and pectinesterase an antagonism between the two enzymes was observed.  相似文献   

15.
Elicitors of phytoalexin accumulation in soybean (Glycine max L. Merr., cv Wayne) cotyledons were released from soybean cell walls and from citrus pectin by partial acid hydrolysis. These two hydrolysates yielded nearly identical distributions of elicitor activity when fractionated on anion-exchange columns. Chromatography of the pectin elicitor on gel filtration and high-pressure anion-exchange columns did not further purify the elicitor. Elicitor activity of the preparation was lost by treatment with either endo-α-1,4-polygalacturonase or pectate lyase. Glycosyl residue compositions of the purified elicitors from cell walls and pectin were both found to be approximately 98% galacturonosyl residues. Linkage analysis of the pectin elicitor showed that most, if not all, of the galacturonosyl residues were α-1,4-linked. The high-mass molecular ions detected by fast atom bombardment-mass spectrometry of the most active elicitor fractions from cell walls and pectin both corresponded precisely to a molecule composed of 12 galacturonosyl residues. These results suggest that dodeca-α-1,4-d-galacturonide is the active elicitor, but the possibility remains that the active component could be a slightly modified oligogalacturonide present, but not detected, in the purified fractions.  相似文献   

16.
Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two α-1,4-endopolygalacturonic acid lyases (EC 4·2·2·2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 × 10−9 molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.  相似文献   

17.
The aim of this study was to enhance the production of xylano-pectinolytic enzymes concurrently and also to reduce the fermentation period. In this study, the effect of agro-residues extract-based inoculum on yield and fermentation time of xylano-pectinolytic enzymes was studied. Microbial inoculum and fermentation media were supplemented with xylan and pectin polysaccharides derived from agro-based residues. Enzymes production parameters were optimized through two-stage statistical design approach. Under optimized conditions (temperature 37°C, pH 7.2, K2HPO4 0.22%, MgSO4 0.1%, gram flour 5.6%, substrate: moisture ratio 1:2, inoculum size 20%, agro-based crude xylan in production media 0.45%, and agro-based crude xylan–pectin in inoculum 0.13%), nearly 28,255 ± 565 and 9,202 ± 193 IU of xylanase and pectinase, respectively, were obtained per gram of substrate in a time interval of 6 days only. The yield of both xylano-pectinolytic enzymes was enhanced along with a reduction of nearly 24 h in fermentation time in comparison with control, using polysaccharides extracted from agro-residues. The activity of different types of pectinase enzymes such as exo-polymethylgalacturonase (exo-PMG), endo-PMG, exo-polygalacturonase (exo-PG), endo-PG, pectin lyase, pectate lyase, and pectin esterase was obtained as 1,601, 12.13, 5637, 24.86, 118.62, 124.32, and 12.56 IU/g, respectively, and was nearly twofold higher than obtained for all seven types in control samples. This is the first report mentioning the methodology for enhanced production of xylano-pectinolytic enzymes in short solid-state fermentation cycle using agro-residues extract-based inoculum and production media.  相似文献   

18.
6-Methoxymellein, a phytoalexin of carrot, was produced in cultured cells upon addition of partial hydrolysates of carrot cells obtained by treatment with purified endo-polygalacturonase or endo-pectin lyase. Direct addition of these enzymes to the cell culture also stimulated the accumulation of this 6-methoxymellein. When the hydrolysates obtained by these enzymes were subsequently treated within pectin esterase, the activity for the elicitation of 6-methoxymellein production decreased appreciably. These results suggest that pectinolytic enzymes release elicitor-active cell wall fragments from carrot cells and that a certain degree of esterification of the galacturonosyl moiety in these pectic polysaccharides is required for elicitor activity.  相似文献   

19.
Pectic activity in autolyzed cultures of Botrytis cinerea in a medium with and without pectin was similar, but in the medium with pectin maximal activities occurred in younger cultures. The pectic activities found were polygalacturonase, polymethylgalacturonase, endo activity (pectin as substrate) and pectin lyase. The molecular weights of polygalacturonase, polymethylgalacturonase and endo activity (pectin as substrate) were 36000, 33000 and 30200 daltons respectively, and the molecular weight of pectin lyase was 18200 daltons. By gel electrophoresis four different pectic activities were detected, three in the top of the gel and one in the bottom. Two enzymes were characterized, the polygalacturonase activity (first band in the top) inhibited by Ca++ and the pectin lyase activity (in the bottom) which was not inhibited by Ca++. These enzymes are not induced by the presence of pectin in the medium during degradation of Botrytis cinerea.  相似文献   

20.
A β-1,4-xylanase has been purified from the mixture of carbohydrate-degrading enzymes found in a commercial preparation from cultures of Trichoderma viride. Purification from the desalted enzyme mixture is accomplished either by preparative isoelectric focusing or in two-column chromatographic steps. The xylanase has maximal activity at pH 5.0 and a molecular weight of approximately 13,000 daltons. The enzyme loses activity when heated to above 45°C. The xylanase degrades xylans from larch and pear cell walls in an apparently endo-fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号