首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Large increases in cAMP concentration inside the cell are generally growth inhibitory for most cell lines of mesenchymal and epithelial origin. Moreover, recent data suggest a role of cAMP in survival of different cell types. Herein, the ability of forskolin (an adenylyl cyclase activator) and IBMX (3-isobutyl-1-methylxanthine) (a phosphodiesterase inhibitor) to modulate cell cycle progression and survival of human pancreatic cancer cells was evaluated. We showed that forskolin + IBMX inhibited serum-induced ERK activities, Rb hyperphosphorylation, Cdk2 activity, and p27(Kip1) downregulation and caused G1 arrest in MIA PaCa-2 cells. Furthermore, forskolin + IBMX protected pancreatic cells against apoptosis induced by prolonged inhibition of ERK activities by preventing Bcl-X(L) downregulation, activation of caspases 3, 6, 8, and 9, and PARP cleavage and by inducing Bad phosphorylation (ser112). Taken together, our data demonstrate for the first time that cAMP is an inhibitor of cell cycle progression and apoptosis in human pancreatic cancer cells.  相似文献   

3.
BACKGROUND: The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS: We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS: Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.  相似文献   

4.
The widely prevailing view that the cyclin-dependent kinase inhibitors (CKIs) are solely negative regulators of cyclin-dependent kinases (CDKs) is challenged here by observations that normal up-regulation of cyclin D- CDK4 in mitogen-stimulated fibroblasts depends redundantly upon p21(Cip1) and p27(Kip1). Primary mouse embryonic fibroblasts that lack genes encoding both p21 and p27 fail to assemble detectable amounts of cyclin D-CDK complexes, express cyclin D proteins at much reduced levels, and are unable to efficiently direct cyclin D proteins to the cell nucleus. Restoration of CKI function reverses all three defects and thereby restores cyclin D activity to normal physiological levels. In the absence of both CKIs, the severe reduction in cyclin D-dependent kinase activity was well tolerated and had no overt effects on the cell cycle.  相似文献   

5.
6.
Cell growth and division are controlled through the actions of cyclin-dependent kinases (CDKs) and cyclin dependent kinase inhibitors (CKIs). Treatment of cell lines with Trichostatin A leads to induction of one of these CKIs, p21, and growth arrest. Induction of p21 can also occur through the actions of TGFbeta1. Latent TGFbeta1 can be activated by the M6P/IGF2R. In the present study we have examined the effect of TSA on members of the IGF axis, the CKIs p21 and p27, and also TGFbeta1 in Hep3B cells. The only member of the IGF axis to be affected by treatments was IGF2. Expression of another gene from the same chromosomal location, H19, was also affected. TGFbeta1 expression was greatly enhanced by TSA. In addition, both CKIs, p21 and p27, were upregulated by TSA. Effects of adding IGF-II or TGFbeta1 to TSA-treated cells on p21 induction were examined. The results show that the induction of p21 by TSA can be modulated by additions of IGF-II whereas addition of TGFbeta1 affects its own expression but not p21. In conclusion, the results indicate that the induction of p21 and cell growth arrest caused by Trichostatin A may involve multiple signaling pathways.  相似文献   

7.
《Biophysical journal》2022,121(12):2312-2329
Balanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis, and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs) p21Cip1/Waf1, p27Kip1, and p57Kip2 bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signaling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular-dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.  相似文献   

8.
Four hypotheses were tested using isolated bovine oocytes. (1) Cumulus oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with the protein kinase A (PKA) inhibitor, H-89, to test if meiotic arrest induced by forskolin or IBMX was due to cAMP-stimulated PKA activity or nonspecific effects of these cAMP elevators. (2) COCs were cultured with a protein kinase C (PKC) stimulator (PDDβ) or inhibitor (GF109203x) to test if PKC modulation altered oocyte maturation. (3) COCs were prestimulated for 15 min with (a) PDDβ followed by cotreatment with forskolin, or (b) with H-89 or H-7 followed by cotreatment with GF109203x, to test for interaction between the PKA and PKC signal transduction pathways. (4) H-89 was added to spontaneously maturing COCs at intervals 0–18 hr to test if H-89 interfered with the transition between meiosis I and II. The results were as follows: H-89 interfered with forskolin or IBMX arrested oocytes in a dose-response manner (IBMX ED50 = 41 μM for COCs; forskolin ED50 = 9 μM for denuded oocytes). Prestimulation with PKC induced meiotic resumption in COCs in spite of the presence of forskolin [PDDβ followed by PDDβ + forskolin: 41–47% germinal vesicle (GV) oocytes; forskolin alone: 90–95% GV], while PKC inhibition induced meiotic arrest to a similar extent as forskolin (GF109230x, 85% GV; forskolin, 67–80% GV). Additionally, pretreatment of COCs with H-89 interfered with GF109203x induced arrest (41% vs. 90% GV, respectively). Finally, H-89 interfered with the timely progression of COCs from meiosis I and II. These results indicate that the PKA and PKC pathways can modulate the maturation of bovine oocytes in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Using theconditionally immortalized human cell line tsFHI, we have investigatedthe role of cyclin-dependent kinase inhibitors (CKIs) in intestinalepithelial cell differentiation. Expression of cyclins,cyclin-dependent kinases (Cdk), and CKIs was examined under conditionspromoting growth, growth arrest, or expression of differentiatedtraits. Formation of complexes among cell cycle regulatory proteins andtheir kinase activities were also investigated. The tsFHI cells expressthree CKIs: p16, p21, and p27. With differentiation, p21 and p27 werestrongly induced, but with different kinetics: the p21 increase wasrapid but transient and the p27 increase was delayed but sustained. Ourresults suggest that the function of p16 is primarily to inhibit cyclinD-associated kinases, making tsFHI cells dependent on cyclin E-Cdk2 forpRb phosphorylation and G1/Sprogression. Furthermore, they indicate that p21 is the main CKIinvolved in irreversible growth arrest during the early stages of celldifferentiation in association with D-type cyclins, cyclin E, and Cdk2,whereas p27 may induce or stabilize expression of differentiated traitsacting independently of cyclin-Cdk function.

  相似文献   

10.
The low molecular weight (LMW) isoforms of cyclin E are unique to cancer cells. In breast cancer, such alteration of cyclin E is a very strong predictor of poor patient outcome. Here we show that alteration in binding properties of these LMW isoforms to CDK2 and the CDK inhibitors (CKIs), p21 and p27, results in their functional hyperactivity. The LMW forms of cyclin E are severalfold more effective at binding to CDK2. Additionally, compared with the full-length cyclin E-CDK2 complexes, the LMW cyclin E-CDK2 complexes are significantly more resistant to inhibition by p21 and p27, despite equal binding of the CKIs to the LMW complexes. When both the full-length and the LMW cyclin E are co-expressed, p27 preferentially binds to the LMW forms yet is unable to inhibit the CDK2 activity. Thus, the LMW forms of cyclin E may contribute to tumorigenesis through their resistance to the inhibitory activities of p21 and p27 while sequestering these CKIs from the full-length cyclin E.  相似文献   

11.
Neutrophil elastase (NE), a serine protease present in high concentrations in the airways of cystic fibrosis patients, injures the airway epithelium. We examined the epithelial response to NE-mediated proteolytic injury. We have previously reported that NE treatment of airway epithelial cells causes a marked decrease in epithelial DNA synthesis and proliferation. We hypothesized that NE inhibits DNA synthesis by arresting cell cycle progression. Progression through the cell cycle is positively regulated by cyclin complexes and negatively regulated by cyclin-dependent kinase inhibitors (CKI). To test whether NE arrests cell cycle progression, we treated normal human bronchial epithelial (NHBE) cells with NE (50 nM) or control vehicle for 24 h and assessed the effect of treatment on the cell cycle by flow cytometry. NE treatment resulted in G(1) arrest. Arrest in G(1) phase may be the result of CKI inhibition of the cyclin E complex; therefore, we evaluated whether NE upregulated CKI expression and/or affected the interaction of CKIs with the cyclin E complex. Following NE or control vehicle treatment, expression of p27(Kip1), a member of the Cip/Kip family, was evaluated. NE increased p27(Kip1) gene and protein expression. NE increased the coimmunoprecipitation of p27(Kip1) with cyclin E complex, suggesting that p27(Kip1) inhibited cyclin E complex activity. Our results demonstrate that p27 is regulated by NE and is critical for NE-induced cell cycle arrest.  相似文献   

12.
13.
14.
The cyclin-dependent kinase inhibitors (CKIs) p27 and p57 are structurally similar, and their biochemical and cellular functions have been thought to be equivalent. However, mice deficient in either p27 or p57 exhibit markedly different phenotypes, suggesting that the in vivo roles of these two proteins might differ. To address this apparent discrepancy, we have generated a knock-in mouse model in which the endogenous p57 gene is replaced by the p27 gene, with p27 thus being expressed instead of p57. This mouse model has provided evidence that p57 functions as a bona fide CKI in vivo and that most of its roles can be performed by p27. Our findings also highlight and provide insight into the question of what determines the distinct cellular responses to abnormal cell cycling induced by the loss of CKIs.  相似文献   

15.
The exocytotic acrosome reaction (AR), which is required for fertilization, occurs when sea urchin sperm contact the egg jelly (EJ) layer. Among other physiological changes, increases in adenylyl cyclase activity, cAMP and cAMP-dependent protein kinase (PKA) activity occur coincident with the AR. By using inhibitors of PKA, a permeable analog of cAMP and the phosphodiesterase inhibitor IBMX, we show that PKA activity is required for AR induction by EJ. A minimum of six sperm proteins are phosphorylated by PKA upon exposure to EJ, as detected by a PKA substrate-specific antibody. The phosphorylation of these proteins and the percentage of acrosome reacted sperm can be regulated by PKA modulators. The fucose sulfate polymer (FSP), a major component of EJ, is the molecule that triggers sperm PKA activation. Extracellular Ca(2+) is required for PKA activation. Six sperm proteins phosphorylated by PKA were identified by tandem mass spectrometry (MS/MS) utilizing the emerging sea urchin genome. Based on their identities and localizations in sperm head and flagellum, the putative functions of these proteins in sperm physiology and AR induction are discussed.  相似文献   

16.
Mechanisms linking mitogenic and growth inhibitory cytokine signaling and the cell cycle have not been fully elucidated in either cancer or in normal cells. Here we show that activation of protein kinase B (PKB)/Akt, contributes to resistance to antiproliferative signals and breast cancer progression in part by impairing the nuclear import and action of p27. Akt transfection caused cytoplasmic p27 accumulation and resistance to cytokine-mediated G1 arrest. The nuclear localization signal of p27 contains an Akt consensus site at threonine 157, and p27 phosphorylation by Akt impaired its nuclear import in vitro. Akt phosphorylated wild-type p27 but not p27T157A. In cells transfected with constitutively active Akt(T308DS473D)(PKB(DD)), p27WT mislocalized to the cytoplasm, but p27T157A was nuclear. In cells with activated Akt, p27WT failed to cause G1 arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52 of 128) of primary human breast cancers in conjunction with Akt activation and was correlated with a poor patient prognosis. Thus, we show a novel mechanism whereby Akt impairs p27 function that is associated with an aggressive phenotype in human breast cancer.  相似文献   

17.
Epidemiological evidence suggests tea (Camellia sinensis L.) has chemopreventive effects against various tumors. Green tea contains many polyphenols, including epigallocatechin-3 gallate (EGCG), which possess anti-oxidant qualities. Reduction of chemically induced mammary gland carcinogenesis by green tea in a carcinogen-induced rat model has been suggested previously, but the results reported were not statistically significant. Here we have tested the effects of green tea on mammary tumorigenesis using the 7,12-dimethylbenz(a)anthracene (DMBA) Sprague-Dawley (S-D) rat model. We report that green tea significantly increased mean latency to first tumor, and reduced tumor burden and number of invasive tumors per tumor-bearing animal; although, it did not affect tumor number in the female rats. Furthermore, we show that proliferation and/or viability of cultured Hs578T and MDA-MB-231 estrogen receptor-negative breast cancer cell lines was reduced by EGCG treatment. Similar negative effects on proliferation were observed with the DMBA-transformed D3-1 cell line. Growth inhibition of Hs578T cells correlated with induction of p27(Kip1) cyclin-dependent kinase inhibitor (CKI) expression. Hs578T cells expressing elevated levels of p27(Kip1) protein due to stable ectopic expression displayed increased G1 arrest. Thus, green tea had significant chemopreventive effects on carcinogen-induced mammary tumorigenesis in female S-D rats. In culture, inhibition of human breast cancer cell proliferation by EGCG was mediated in part via induction of the p27(Kip1) CKI.  相似文献   

18.
The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained.  相似文献   

19.
Cell growth and division are controlled through the actions of cyclin-dependent kinases (CDKs) and cyclin dependent kinase inhibitors (CKIs). Treatment of cell lines with Trichostatin A leads to induction of one of these CKIs, p21, and growth arrest. Induction of p21 can also occur through the actions of TGFβ1. Latent TGFβ1 can be activated by the M6P/IGF2R. In the present study we have examined the effect of TSA on members of the IGF axis, the CKIs p21 and p27, and also TGFβ1 in Hep3B cells. The only member of the IGF axis to be affected by treatments was IGF2. Expression of another gene from the same chromosomal location, H19, was also affected. TGFβ1 expression was greatly enhanced by TSA. In addition, both CKIs, p21 and p27, were upregulated by TSA. Effects of adding IGF-II or TGFβ1 to TSA-treated cells on p21 induction were examined. The results show that the induction of p21 by TSA can be modulated by additions of IGF-II whereas addition of TGFβ1 affects its own expression but not p21. In conclusion, the results indicate that the induction of p21 and cell growth arrest caused by Trichostatin A may involve multiple signaling pathways.  相似文献   

20.
The tumor suppressor, retinoblastoma (Rb), is involved in both terminal mitosis and neuronal differentiation. We hypothesized that activation of the Rb pathway would induce cell cycle arrest in primary neural precursor cells, independent of the proposed function of cyclin-dependent kinases 4/6 (CDK4/6) to sequester the CIP/KIP CDK inhibitors (CKIs) p21 and p27 from CDK2. We expressed dominant negative adenovirus mutants of CDKs 2, 4, and 6 (dnCDK2, dnCDK4, and dnCDK6) in neural progenitor cells derived from E12.5 wild type and Rb-deficient mouse embryos. In contrast to previous studies, our results demonstrate that in addition to dnCDK2, the dnCDK4/6 mutants can induce growth arrest. Moreover, the dnCDK4/6-mediated inhibition is Rb-dependent. The dnCDK2 partially inhibited cell growth in Rb-deficient cells, suggesting that CDK2 may have additional targets. A previously proposed function of CDK4/6 is CKI sequestration, thereby preventing the resulting inhibition of CDK2, believed to be the key regulator of cell cycle. However, our immunoprecipitations revealed that the dominant negative CDK mutants could arrest cell growth despite their interaction with p21 and p27. Taken together, our results demonstrate that both CDK2 and CDK4/6 are crucial for cell cycle regulation. Furthermore, our data underscore the importance of the Rb regulatory pathway in neuronal development and cell cycle regulation, independent of CKI sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号