首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nutritional requirements and culture conditions affecting biosynthesis of L-asparaginase in a mutant of Escherichia coli HAP designated strain A-1 were studied. Asparaginase activity was increased by the addition of L-glutamic acid, L-glutamine, or commercial-grade monosodium glutamate. The rate of enzyme synthesis was dependent on the interaction between the pH of the culture and the amount of oxygen dissolved in the medium. A critical oxygen transfer rate essential for asparaginase formation was identified, and a fermentation procedure is described in which enzyme synthesis is controlled by aeration rate. Enhancement of L-asparaginase activity by monosodium glutamate was inhibited by the presence of glucose, culture pH, chloramphenicol, and oxygen dissolved in the fermentation medium.  相似文献   

2.
We optimized culture medium and batch-fed fermentation conditions to enhance production of an acetyl esterase from Pseudomonas sp. ECU1011 (PSAE). This enzyme enantioselectively deacetylates α-acetoxyphenylacetic acid. The medium was redesigned by single-factor and statistical optimization. The addition of ZnSO4 enhanced enzyme production by 37%. Yeast extract concentration was directly associated with the enzyme production. The fermentation was scaled up in a 5-l fermenter with the optimized medium, and the correlations between enzyme production and dissolved oxygen, pH, and feeding strategy were investigated. The fermentation process was highly oxygen-demanding, pH sensitive and mandelic acid-inducible. The fermentation pH was controlled at 7.5 by a pH and dissolved oxygen feedback strategy. Feeding mandelic acid as both a pH regulator and an enzyme inducer increased the enzyme production by 23%. The results of the medium redesign experiments were confirmed and explained in fed-batch culture experiments. Mathematical models describing the fermentation processes indicated that the enzyme production was strongly associated with cell growth. The optimized pH and dissolved oxygen stat fed-batch process resulted high volumetric production of PSAE (4166 U/l, 7.2-fold higher than the initial) without enantioselectivity decline. This process has potential applications for industrial production of chiral mandelic acid or its derivatives.  相似文献   

3.
Seven Mycobacterium strains were grown statically on salts-glycerol-asparagine (Sauton) or on salts-glucose-glutamate (Sym) media. At desired time of incubation, the bacteria were washed with water, disintegrated with powdered corundum and in resulting cell-free extracts L-asparaginase activity was determined by the Conway method. The majority of experiments were performed on M. phlei which exhibited considerable rise in L-asparaginase activity with increasing age of the culture. This change did not occur on Sym medium because of Zn2+, which proved to abolish the effect of the enzyme induction in vivo but did not inhibit the activity in vitro. Addition of rifampicin to Sauton culture media resulted in a low enzyme level. Exogenous asparagine and glycerol were not indispensable for the enzyme synthesis and could be replaced by glutamate and glucose, respectively.  相似文献   

4.
Experiments using a soluble, chemically defined fermentation medium provided important knowledge about the kinetics of efrotomycin biosynthesis. Equivalent titers were obtained in a batch process in both shaker flasks and fermentors. By extended feeding of both monosodium glutamate and glycerol at elevated temperatures, in combination with sulphuric acid pH control, the specific production rate was increased 2.8 fold and overall production rate was improved 5-fold. If the monosodium glutamate was fed too fast, then ammonium accumulated with indications of strong repression of efrotomycin biosynthesis at concentrations above 6 mM. In contrast to the complex medium used for this process, the chemically define medium was completely insensitive to changes in sterilization conditions.  相似文献   

5.
The production of L-asparaginase, an enzyme widely used in cancer chemotherapy, is mainly regulated by carbon catabolite repression and oxygen. This study was carried out to understand how different carbon sources and Vitreoscilla hemoglobin (VHb) affect the production of this enzyme in Pseudomonas aeruginosa and its VHb-expressing recombinant strain (PaJC). Both strains grown with various carbon sources showed a distinct profile of the enzyme activity. Compared to no carbohydrate supplemented medium, glucose caused a slight repression of L-asparaginase in P. aeruginosa, while it stimulated it in the PaJC strain. Glucose, regarded as one of the inhibitory sugars for the production L-asparaginase by other bacteria, was determined to be the favorite carbon source compared to lactose, glycerol and mannitol. Furthermore, contrary to common knowledge of oxygen repression of L-asparaginase in other bacteria, oxygen uptake provided by VHb was determined to even stimulate the L-asparaginase synthesis by P. aeruginosa. This study, for the first time, shows that in P. aeruginosa utilizing a recombinant oxygen uptake system, VHb, L-asparaginase synthesis is stimulated by glucose and other carbohydrate sources compared to the host strain. It is concluded that carbon catabolite and oxygen repression of L-asparaginase in fermentative bacteria is not the case for a respiratory non-fermentative bacterium like P. aeruginosa.  相似文献   

6.
The effect of dissolved oxygen concentrations on the behavior of Serratia marcescens and on yields of asparaginase and prodigiosin produced in shaken cultures and in a 55-liter stainless-steel fermentor was studied. A range of oxygen transfer rates was obtained in 500-ml Erlenmeyer flasks by using internal, stainless-steel baffles and by varying the volume of medium per flask, and in the fermentor by high speed agitation (375 rev/min) or low rates of aeration (1.5 volumes of air per volume of broth per min), or both. Dissolved oxygen levels in the fermentation medium were measured with a membrane-type electrode. Peak yields of asparaginase were obtained in unbaffled flasks (3.0 to 3.8 IU/ml) and in the fermentor (2.7 IU/ml) when the level of dissolved oxygen in the culture medium reached zero. A low rate of oxygen transfer was accomplished by limited aeration. Production of prodigiosin required a supply of dissolved oxygen that was obtainable in baffled flasks with a high rate of oxygen transfer and in the fermentor with a combination of high-speed agitation and low-rate aeration. The fermentation proceeded at a more rapid rate and changes in pH and cell populations were accelerated by maintaining high levels of dissolved oxygen in the growth medium.  相似文献   

7.
A mating between Escherichia coli 4318 (thi leu Las- Hfr) and E. coli A-1 (Met- Las+ F-) resulted in the formation of prototrophic recombinants having L-asparaginase activities at three distinct levels. The physiology of L-asparaginase synthesis in these recombinants is decribed. One class of recombinants produced significantly more L-asparaginase than E. coli A-1. L-Asparaginase synthesis in the recombinants was inhibited by the presence of dissolved oxygen in the medium and was transiently repressed by the presence of glucose in the same manner as that observed in the parental strains. L-Asparaginase activity was increased by the addition of oxalacetate as well as other members of the tricarboxylic acid cycle.  相似文献   

8.
Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77x10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate.  相似文献   

9.
The carbon and nitrogen sources most suitable for L-asparaginase production by Enterobacter aerogenes were selected and their concentrations optimized in shake-flask cultures. Sodium citrate (1.0%) and diammonium hydrogen phosphate (0.16%) proved to be the best sources of carbon and nitrogen, respectively. Nitrogen catabolite repression of enzyme formation was absent in this bacterium. Cultivation in a reactor showed that the dissolved oxygen level is the limiting factor for L-asparaginase production by E. aerogenes. Glucose was found to be a repressor of enzyme synthesis. Asparagine was absent intracellularly when the L-asparaginase level was high. An increase in the extracellular alanine level when the dissolved oxygen remained low indicated a shift from aerobic to fermentative metabolism. Received: 20 July 1999 / Accepted: 2 October 1999  相似文献   

10.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

11.
Cell yield and toxicity of B. thuringiensis H-14 was improved markedly by adopting a simple fed-batch fermentation technique based on controlling glucose concentration. Maintenance of steady glucose concentration (0.3-0.5%) in the culture medium was achieved by the continuous addition of concentrated glucose solution. Addition of glucose at 3 g/hr/l of culture starting from 3rd hr till 16th hr of fermentation was found to yield cell densities of 80 g/l (wet weight) which represented a nearly 3-fold increase over the batch mode. A fivefold increase in toxicity was obtained by fed-batch fermentation. Cultivation of B. thuringiensis H-14 to high cell densities had no negative effect on sporulation and toxin synthesis. The rate of pH drop and dissolved oxygen level were within manageable limits.  相似文献   

12.
Methods of measuring oxygen solubility in culture media are scarce, and those available are tedious to apply. A simple colorimetric assay was developed and applied to the analysis of oxygen solubility during alcoholic fermentation. The method was based on the consumption of oxygen by glucose oxidase activity and the production of the pink quinone of syringaldazine by coupled peroxidase activity. Color formation at 526 nm progressed through an optimum that was a linear function of the oxygen added to the assay. Sensitivity was maximized by operating at pH 7 and limiting the medium sample volume added. Each assay took 10-15 min to prepare and react. Reaction time was minimized by using abundant glucose and enzyme concentrations. Data obtained by the assay developed showed good agreement with published oxygen solubilities in water and selected media at various temperatures. Subsequent analyses of fermentation broths indicated falling sugar concentration to be primarily responsible for increases in oxygen solubility during fermentation. For example, during fermentations started with 230 g/L xylose or glucose, oxygen solubility could increase by 41% due to sugar consumption alone. This procedure can provide the solubility data needed to accurately calibrate in-line electronic probes for monitoring dissolved oxygen concentration during fermentation processes.  相似文献   

13.
比较研究了固定化谷氨酸棒杆菌细胞和自然细胞的谷氨酸脱氢酶、异拧檬酸脱氢酶,葡萄糖-6-磷酸脱氢酶的一些性质。最适pH、温度对二者酶促反应速度的影响基本相似;pH、热稳定性固定化细胞高于自然细胞;底物表观米氏常数谷氨酸脱氢酶,异柠檬酸脱氢酶有所增大,而葡萄糖-6-磷酸脱氢酶则有所下降;辅酶表观米氏常数均有所增大。这些是影响固定化细胞应用的主要因素。  相似文献   

14.
Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.  相似文献   

15.
Actinobacteria are promising source of a wide range of important enzymes, some of which are produced in industrial scale, with others yet to be harnessed. L-Asparaginase is used as an antineoplastic agent. The present work deals with the production and optimization of L-asparaginase from Actinomycetales bacterium BkSoiiA using submerged fermentation in M9 medium. Production optimization resulted in a modified M9 medium with yeast extract and fructose as carbon and nitrogen sources, respectively, at pH 8.0, incubated for 120 hr at 30 ± 2°C. The crude enzyme was purified to near homogeneity by ammonium sulfate precipitation following dialysis, ion-exchange column chromatography, and finally gel filtration. The sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) revealed an apparent molecular weight of 57 kD. The enzyme was purified 95.06-fold and showed a final specific activity of 204.37 U/mg with 3.49% yield. The purified enzyme showed maximum activity at a pH 10.0 and was stable at pH 7.0 to 9.0. The enzyme was activated by Mn2+ and strongly inhibited by Ba2+. All these preliminary characterization suggests that the L-asparaginase from the source may be a tool useful to pharmaceutical industries after further research.  相似文献   

16.
可溶性TRAIL蛋白的高密度培养及补料策略研究   总被引:3,自引:0,他引:3  
采用分批补料的方法高密度培养重组大肠杆菌C600/PbvTRAIL制备人可溶性TRAIL蛋白,优化发酵工艺,探索简单高效的分离纯化方法并测定蛋白生物活性。通过比较几种不同的补料策略:间歇流加、Dostat、pHstat,摸索了一种流加策略,即DOstatpHstat组合流加,有效的避免了发酵过程中,尤其是诱导表达阶段乙酸积累的增加,使TRAIL蛋白在高密度培养条件下,得到高效表达。菌体密度最终达到300g/L(WCW)以上,可溶性TRAIL蛋白占菌体总蛋白的4.2%,含量为1.1g/L。在整个发酵过程中,乙酸浓度接近于0,且未使用任何特殊手段,如纯氧、加压等,简化了发酵工艺,降低了发酵成本,为TRAIL的工业化生产创造了条件。  相似文献   

17.
An ascogenous yeast with high potentialities for L-glutaminase and L-asparaginase formation was isolated from Egyptian soils by the application of the culture enrichment method. The organism, identified as Pichia polymorpha, was obtained through the enrichment of soil samples with a simple medium containing 0.5% L-glutaminase as a major carbon and nitrogen source at low pH values. The amidase activities were produced constitutively on a variety of media irrespective of the presence of their substrates in the growth medium. Assays of enzyme activity have revealed that optimum pH values for L-glutamine and L-asparagine hydrolysis are 6.0 and 6.7, respectively. The L-asparaginase activity of the cells was heat-stable for at least 10 minutes at 60 degrees C. The enzyme exhibited apparent Km of 1.37 x 10(-2) M and 1.95 x 10(-2) M for L-asparagine and L-glutamine, respectively. No metal requirement were detected for the amidase activities of the organism under study.  相似文献   

18.
Yarrowia lipolytica is able to secrete large amounts of citric acid (CA), which is greatly affected by the dissolved oxygen concentration (DOC) in the fermentation medium. In this study, oleic acid was selected as oxygen‐vector to improve DOC during CA fermentation. When 2% (v/v) of oleic acid was added to the culture broth, higher DOC (>42.1%) was determined throughout the CA synthesis phase. The yield of CA reached a maximum of 32.1 g/L (25.4% higher than the control) and the biomass was 8.8 g/L. The substrate uptake rate, products formation rate and key enzyme activities were also determined, and the results indicated that CA synthesis was strengthened with oleic acid addition. Furthermore, it was detected that oleic acid could be assimilated by the cells, which means that oleic acid could be served both as oxygen‐vector and co‐substrate for CA synthesis by Y. lipolytica. In a bioreactor with working volume of 3 L, the highest concentration of CA reached to 36. 4 g/L in the presence of 2% (v/v) oleic acid after 192 h of fermentation. These results confirmed that oleic acid could be applied in the large‐scale production of CA by Y. lipolytica.  相似文献   

19.
【背景】为了提高堆肥降解有机废弃物的效率,高效堆肥菌剂成为了研究热点,其中以真菌应用的研究为多,但真菌也有对氧气和底物敏感等缺点,细菌对堆肥的作用开始被研究。本实验室以羧甲基纤维素钠(CMC-Na)为底物,从绿化废弃物堆肥中筛选得到枯草芽孢杆菌(Bacillussubtilis,B.subtilis) BL03,它具有较好的纤维素分解能力,能提高绿化废弃物堆肥中纤维素降解和腐殖质合成的速度。【目的】进一步提高B.subtilisBL03的纤维素酶生产能力。【方法】利用常压室温等离子(Atmospheric and room temperature plasma,ARTP)诱变BL03菌,通过CMC-刚果红固体培养基观察水解透明圈,以及液体发酵后检测酶活力的方法进行3轮筛选;通过连续多代培养观察突变株的遗传稳定性;通过梯度温度、p H培养研究突变株发酵的最适生长温度、培养基初始pH;利用正交设计方法研究适合突变株发酵培养的工业级原料配方。【结果】筛选到2株正突变株,酶活力分别提高了69%和72%;连续10代培养稳定,验证了突变株的遗传稳定性;其中酶活力最高的突变株BLA3890最适培养温度为37°C、培养基初始pH为5.0-6.5,研究得到较经济的发酵培养基配方。【结论】ARTP诱变B. subtilis BL03后得到的突变株BLA1973和BLA3890在绿化废弃物堆肥或其他纤维素降解行业具有进一步研究和应用的价值。  相似文献   

20.
Summary A detailed metabolic flux analysis (MFA) for hyaluronic acid (HA) production by Streptococcus zooepidemicus was carried out. A metabolic network was constructed for the metabolism of S. zooepidemicus. Fluxes through these reactions were estimated by MFA using accumulation rates of biomass and product, consumption rate of glucose in batch fermentation and dissolved oxygen-controlled fermentation. The changes of the fluxes were observed at different stages of batch fermentation and in different dissolved oxygen tension (DOT)-controlled fermentation processes. The effects of metabolic nodes on HA accumulation under various culture conditions were investigated. The results showed that high concentration of glucose in the medium did not affect metabolic flux distribution, but did influence the uptake rate of glucose. HA synthesis was influenced by DOT via flux redistribution in the principal node. Adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH) produced in the fermentation process are associated with cell growth and HA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号