首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal antibodies were raised in response to βIII-galactosidase purified from cell wall of Cicer arietinum epicotyls. The antibody preparation generated, bound to βIII protein giving a major protein band in the zone corresponding to Mr 45 000, the molecular mass previously estimated for βIII-galactosidase. These antibodies clearly suppress autolytic reactions in isolated walls of Cicer arietinum epicotyl segments, while the preimmune serum had no effect on autolytic reaction. The results strongly support the idea that the autolytic degradation of the cell wall is carried out by the βIII-galactosidase.
The antibodies against β-galactosidase were also able to inhibit cell wall hydrolysis mediated by both total cell wall protein extracted by LiCl and cell wall hydrolysis mediated by βIII-galactosidase.
Since autolysis is thought to be related to the process of cell wall loosening, the effects of the antibodies against the autolytic enzyme was also tested on epicotyl growth. β-galactosidase antibodies consistently inhibited IAA-induced elongation.  相似文献   

2.
The Hw pectic fraction, extracted with hot water, is the major component of 4 days old epicotyl cell walls of Cicer arietinum L. cv. Castellana and is formed of arabinose and galactose, with smaller amounts of rhamnose, xylose, glucose and mannose. The cell wall 2βIII enzymatic fraction, with β-galactosidase activity (EC 3.2.1.23) and the main enzyme responsible for the autolytic process, essentially acts on the Hw fraction, and is able to hydrolyze 560 μg of this fraction per g of epicotyls, releasing mainly galactose as monosaccharide.
The 2βIII fraction acts very weakly on the other polysaccharide fractions of the cell wall, both pectic and hemicellulosic, releasing 80, 60 and 14 μg per g of epicotyls from the fractions extracted with oxalate (Ox), KOH 10% (KI) and KOH 24% (KII), respectively. It can be concluded that the natural substrate of this enzyme is the Hw pectic fraction, probably an arabinogalactan that is found in the cell wall in isolated form or as side chains of the rhamnogalacturonan I.  相似文献   

3.
Pisum sativum L. (cv. Lincoln) epicotyl cell walls show autohydrolysis and release into the incubation medium up to 120 μg of sugar per mg of cell wall dry weight in 30 h. Cell walls from younger epicotyls with high growth capacity showed higher auto-lytic capacity than older epicotyls. This suggests that both processes, growth and au-tolysis, are related. The proteins responsible for autolysis were extracted from the wall fraction with high saline solution (3 M LiCl) and enzymatic activities associated with the proteins were studied. The highest activity corresponded to α-galactosidase; lower activities were found for β-galactosidase, a-arabinosidase and exoglucanase. Changes in enzymatic activities and changes in the proportion of sugars released in autolysis by cell walls during the growth of epicotyls support the notion that α-galac-tosidase is one of the enzymes involved in the process of autolysis, and that the liberation of arabinose and galactose in this process occurs as arabinogalactan.  相似文献   

4.
The protein extracted from the cell wall of the epicotyls of Cicer arietinum L. cv. Castellana was separated by ion exchange chromatography in four different fractions with β-D-galactosidase (EC 3.2.1.23) activity. These were called βI, βII, βIII and βIV, according to their order of elution. βII was associated with a particularly high β-D-glucosidase (EC 3.2.1.21) activity. Gel filtration chromatography of each of the fractions gave further subdivision of fractions βI and βIII. Subfractions 1 βI, 1 βII and 1 βIV have glucosidase activity and subfractions 2 βI and 2 βIII have galactosidase activity.
The studies on the hydrolytic capacity of these fractions and its relationship with the autolytic process seem to show that subfraction 2 βIII is responsible for autolysis. The release of total and reducing sugars is very similar for autolysis and hydrolysis by 2 βIII. The sugars released are mainly galactose and, to a lesser extent arabinose and glucose. Galactose is released as a monosaccharide, while arabinose remains associated to a polysaccharide component together with glucose and small amounts of galactose.  相似文献   

5.
β-Galactosidase (EC 3.2.1.23) has been established as the main enzyme involved in the autolytic process. The enzyme extracted from cell walls of epicotyls of Cicer arietinum L. cv. Castellana with 3 M LiCl is a 45 kDa protein composed of a single subunit, having an optimum pH of 4; an optimum temperature of 45°C and Km and Vmax of 1.72 m M and 18.5 nkat (mg protein)–1 respectively, as evaluated against p -nitrophenyl-β- d -galactopyranoside. The enzyme is inhibited by Hg2+, d -galactono-1,4-lactone and galactose, substances that also inhibit the autolytic process. Ca2+ and EDTA, which do not affect the activity of the β-gaiactosidase, do however modify the hydrolysis of the cell wall mediated by the enzyme, and they also inhibit the autolytic process. Ca2+ decreased both processes, whereas EDTA increased them; and when both substances were added together, their individual effects were neutralized. The effects of both agents is probably due to modifications in the cell wall that prevent access of the enzyme to its substrate.  相似文献   

6.
Indoleacetic acid (IAA), a factor that induces growth in epicotyls of cicer arietinum L. cv. Castellana, increases the autolytic capacity of the cell walls by 50%, suggesting that autolysis is related to the processes of cell wall loosening that accompany growth. IAA promotes an increase in the specific activities of the enzymes involved in autolysis, mainly α-galactosidase (EC 3.2.1.22). This relationship autolysis-growth. was also observed in a study of the autolytic capacity of cell walls from regions of the epicotyl with different growth capacity. The sugars released and the level of enzymatic protein were higher in the subapical region that towards the base.  相似文献   

7.
Coleoptile cell wall proteins from Zea mays L. hybrid B 37 × Mo 17 were extracted and fractionated. Three enzymes identified in that extract were examined to determine their role in cell wall hydrolysis with a goal of evaluating the extent to which they participated in autohydrolytic reactions. Two separate proteins were identified as endo- and exo-glucanases. Incubation of these enzymes with heat inactivated cell walls, liberates products derived from the constitutive (1→3), (1→4)-β- d -glucan. The release of sugars from walls resembles that of cell wall autolysis. A third cell wall protein degraded polysaccharides in a more general manner, releasing carbohydrates containing xylose, arabinose, galactose and glucose. Polyclonal antibodies raised against the exoglucanase protein suppressed autolytic reactions of isolated cell wall.  相似文献   

8.
The inhibition of growth by polyethlene glycol (PEG)-induced osmotic stress led to modifications in the changes taking place in cell wall composition during normal growth of epicotyls of Cicer arietinum L. cv. Castellana. Epicotyls growing under normal conditions showed a decrease in the amount of pectic fractions and an increase in the hemicellulosic fractions and α-cellulose that led to an increase in the rigidity and a loss in growth capacity. Among the hemicellulosic fractions, the KI-2 fraction (insoluble fraction of 10% KOH-extracted hemicelluloses) seemed to be the only one related to the elongation process and subsequent rigidity. During normal growth a decrease was observed in the total amount of galactose, mainly from the pectic fractions. The inhibition of elongation led to an increase in the amount of the cell walls, due to inhibition of cellular elongation. PEG prevented the increase in the hemicelluloses and the α-cellulose, indicating that these changes were related to elongation. Thus, during the inhibition of elongation there is probably an inhibition of new synthesis that prevents cell wall rigidity and maintains cell wall growth capacity. Changes in the pectic fractions during growth were not affected by the inhibition of elongation, showing that these fractions are related to cell wall loosening rather than to elongation. Study of the cell wall composition confirms the idea that the autolytic process is regulated by changes in the cell wall structure during epicotyl growth  相似文献   

9.
An exhaustive cell wall fractionation of Fusarium oxysporum f. sp. lycopersici race 2 ( Fol 2) with alkali in a sequential procedure yields only three polysaccharide fractions: F1s (alkali and water soluble), F11 (alkali soluble and water insoluble) and F4 (alkali-insoluble residue). These fractions amounted respectively to 15, 1.3 and 52% of the cell wall and have been characterized by infra-red spectroscopy and gas liquid chromatography-mass spectrometry (GLC-MS). F1s is a β-gluco-galacto-mannan, F11 is mainly composed of a β-1, 3-glucan and F4 is a β-1,3-glucan-chitin complex. The F1s is a very complex polysaccharide and its hydrolysis requires the action of different enzymes. The lysis of the cell wall and its three fractions with lytic enzymes from Fol 2 has been studied and a correlation between the lysis of the cell wall and the lysis of these fractions was found. The amount of glucose, galactose and mannose in F1s and cell wall hydrolysates were quantified by GLC and they indicated the hydrolysis of the gluco-galacto-mannan polysaccharide. In the hydrolysis of F4 and cell walls N -acetylglucosamine was also found and quantified. When chlamydospores of this fungus were treated with Fol 2 lytic enzymes, the sugars liberated were principally mannose and N -acetylglucosamine. These results indicate that Fol 2 produces during its autolysis the necessary enzymes to hydrolyse its own cell walls. This fact suggests that a biological control of Fol 2 with its own lytic enzymes, conveniently immobilized, could be developed.  相似文献   

10.
In order to gain insight into the mechanism of cell extension growth, enzymic processes involved in structural modification of cell wall xyloglucans were investigated, using an apoplastic enzyme preparation from epicotyls of dark grown Vigna angularis Ohwi et Ohashi cv. Takara and purified xyloglucans derived from cell walls of Vigna. The reaction of Vigna xyloglucan (mass average molecular weight=420 kDa) with the apoplastic enzyme preparation gave three fractions: (1) a waterinsoluble high molecular weight (820 kDa) xyloglucan fraction (WI), (2) a watersoluble low molecular weight (149 kDa) xyloglucan fraction (WS), and (3) an 80% ethanol-soluble monosaccharide fraction (ES). WI and WS were chiefly composed of t -galactosyl-, t -xylosyl-, 2-xylosyl-, 4-glucosyl- and 4,6-glucosyl residues, whereas ES was composed of fucose, galactose, glucose and xylose monomers. The data indicate that WI is generated by the linking of xyloglucan molecules by some alkali stable linkages, probably of glycosidic nature. The optimal pH for the WI-producing activity of the apoplastic enzyme preparation was 5.4. Higher WI-producing activity was detected in the upper juvenile than in the lower non-elongating regions of the epicotyl. Our data suggest the possible involvement of a transglycosylation reaction in the structural changes of the xyloglucans that are responsible for cell extension growth of the Vigna angularis epicotyl. The data are also consistent with the idea that the enzymic processes are regulated by hydrogen ions in the apoplastic space.  相似文献   

11.
Indole-3-acetic acid at 10 µM caused a 30% decrease inthe weight-average molecular mass of xyloglucans extracted with24% KOH from the cell walls of epicotyl segments of azuki bean(Vigna angularis Ohwi et Ohashi cv. Takara). Concanavalin A(Con A) at 2 g liter–1 completely inhibited the IAA-inducedchange in the molecular mass of the xyloglucans. Con A alsosuppressed the autolysis of pectin-depleted cell walls, as wellas the breakdown of xyloglucans by a protein fraction that hadbeen extracted with 1 M NaCl from the cell walls of azuki beanepicotyls. These results indicate that Con A is a potent inhibitorof the breakdown of xyloglucans both in vivo and in vitro. Mostof the activity responsible for the decrease in staining byiodine and the increase in reducing power of solution of xyloglucansin the protein fraction from cell walls bound to a column ofCon A-Sepharose and was eluted by the specific hapten, methyl  相似文献   

12.
《Plant science》1986,44(3):155-161
The products released in cell wall autolysis from 4-day-old epicotyls of Pisum sativum elute in gel filtration chromatography (Bio Gel P.2) as two components, mono and polysaccharides, in a practically constant ratio over the time of incubation. The polysaccharides are mainly composed of arabinose and galactose, with smaller amounts of xylose and glucose, whereas the monosaccharide are almost exclusively composed of galactose. The same results were obtained when inactive cell walls were hydrolyzed by the enzymes extracted from the cell wall with LiCl. The hydrolysis of the different cell wall fractions by these enzymes shows that the autolytic substrates are preferentially located on the pectic fractions.  相似文献   

13.
《Phytochemistry》1986,25(5):1053-1055
Delignified ryegrass cell walls were effectively hydrolysed by a mixture of endo-1,4-β-glucanase and xylanase, but the rate and extent of hydrolysis was greater when the cellobiohydrolase part of the cellulase system was also present. Deacetylation of the xylan in the cell walls had a significant effect on the rate but not on the extent of hydrolysis of delignified cell walls. Deacetylation followed by endoglucanase-xylanase action resulted in a significant decrease in the proportion of xylose present in the residual cell walls. However, when cellobiohydrolase was acting in admixture with the endoglucanase-xylanase, it was the cellulose component of deacetylated cell walls that was preferentially hydrolysed. The proportion of galactose in the unhydrolysed fraction of the cell walls increased significantly after enzyme action by the cellobiohydrolase-endoglucanase-xylanase system.  相似文献   

14.
Lipase activity of whole cells of Rh. rubra has been localized in a particular fraction rich in walls and in isolated cell walls. The enzyme activity has been determinated with olive oil and the triglyceride fraction of olive oil as substrats. Gas chromatography of fatty acids and triglycerides isolated after enzyme hydrolysis shows that the action of Rh. rubra is not only limited to a simple hydrolysis of the substrate. The triglyceridase activity level is dependent of the phosphate content of the culture medium.  相似文献   

15.
Native cell walls of azuki bean epicotyls incubated in bufferautolytically released neutral sugars, abundant in galactose,and uronic acids. Treatment with 10–5 M IAA of subapicalor basal epicotyl segments for 3 h did not influence the amountof total neutral sugars released from the cell walls duringautolysis. However, the amount of glucose and xylose releasedfrom subapical cell walls was increased by IAA. Pretreatmentwith IAA of subapical epicotyl segments enhanced the solubilizationof neutral sugars from pectinase-treated cell walls during incubationin buffer at pH 5 to 6. The amount of fucose, xylose, and glucosereleased was specifically increased by IAA. Of the sugar fractionsreleased from pectinase-treated cell walls during autolysisand subsequently separated by gel filtration on a ToyopearlHW-40S column, IAA promoted the release of oligosaccharides,consisting mainly of glucose and xylose. These results suggestthat autolytic degradation of xyloglucans is closely relatedto IAA-induced growth of azuki bean epicotyls. (Received May 19, 1989; Accepted January 5, 1990)  相似文献   

16.
Aldose-1-epimerase or mutarotase (EC 5.1.3.3) catalyzes interconversion of α/β-anomers of aldoses, such as glucose and galactose, and is distributed in a wide variety of organisms from bacteria to humans. Nevertheless, the physiological role of this enzyme has been elusive in most cases, because the α-form of aldoses in the solid state spontaneously converts to the β-form in an aqueous solution until an equilibrium of α : β=36.5 : 63.5 is reached. A gene named GAL10 encodes this enzyme in yeast. Here, we show that the GAL10 -encoded mutarotase is necessary for utilization of galactose in the milk yeast Kluyveromyces lactis , and that this condition is presumably created by the presence of the β-specific galactose transporter, which excludes the α-anomer from the α/β-mixture in the medium at the cell surface. Thus, we found that a mutarotase-deficient mutant of K. lactis failed to grow on medium, in which galactose was the sole carbon source, but, surprisingly, that the growth failure is suppressed by concomitant expression of the Saccharomyces cerevisiae -derived galactose transporter Gal2p, but not by that of the K. lactis galactose transporter Hgt1p. We also suggest the existence of another mutarotase in K. lactis , whose physiological role remains unknown, however.  相似文献   

17.
Autolytic defective mutant of Streptococcus faecalis.   总被引:21,自引:14,他引:7       下载免费PDF全文
Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme.  相似文献   

18.
Five glycosidase activities from cell homogenate of carrot ( Daucus carota L. cv. Kintoki) cell cultures were assayed after extraction successively by phosphate buffer (pH 7.0) and the buffer plus 2 M NaCl. A β-galactosidase (EC 3.2.1.23) was isolated in a highly purified state from the buffer-soluble protein fraction by ammonium sulfate fractionation and chromatography on CM-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-200. The molecular weight of this enzyme was ca 104 000 and the isoelectric point was pH 7.8. The optimal activity occurred at pH 4.4 with McIlvaine buffer. The Km and Vmax values were 1.67 m M and 201 units (mg protein)−1, respectively, for p -nitrophenyl β- d -galactopyranoside. The enzyme activity was strongly inhibited by Zn2+, Cu2+, Hg2+ and d -galactono-1,4-lactone. The enzyme acted on the β-1,4-linked galactan prepared from citrus pectin in an exo-fashion. Furthermore, the enzyme was slightly involved in the hydrolysis of the pectic polymer and cell walls purified from carrot cell cultures.  相似文献   

19.
Oryza sativa L. var. bahia coleoptile cell walls show sufficient autolytic activity for the release into the surrounding medium of amounts up to 60 μg of sugars per mg of dry weight of cell wall. The products released elute in Bio-gel P.2 as mono- and polysaccharides with glucose as the sole component. The polysaccharide component releases tri- and tetrasaccharides on treatment with a glucanase specific for β (1–3) (1–4) linkages in the same proportion as that of the mixed glucan of the cell wall. This supports the hypothesis that the polysaccharide component originates from the cell wall glucan and that autolysis is therefore related to the processes of the loss of rigidity of the cell wall. Nojirimycin (a specific glucanase inhibitor and inhibitor of auxin-induced elongation) decreases autolytic activity of the cell walls, reducing it to 30% of its normal value. Bio-gel P. 2 elution of the products released in autolysis in the presence of nojirimycin shows that only the monosaccharide fraction was affected.  相似文献   

20.
The protein fraction extracted with a high ionic strength buffer from the cell wall preparation of oat ( Avena sativa L.) coleoptiles and first leaves contained starch-degrading (amylase) activity. The activity of apoplastic amylase in the coleoptiles and first leaves continued to increase in parallel with organ growth. One of the apoplastic amylases recovered from shoot cell wall preparations was purified by sequential ion exchange and gel filtration chromatography, and the catalytic properties of the enzyme were analysed. The purified enzyme gave a single 25 kDa protein band on SDS-PAGE. The enzyme exhibited maximum activity at pH 5.0 against maltooligosaccharides. The purified enzyme hydrolysed soluble starch and maltooligosaccharides larger than tetraose at maltose unit, but did not hydrolyse β -limit dextrin or p -nitrophenyl- α - d -glucopyranoside. These results as well as the findings that the molecular size and the catalytic properties of the purified enzyme are different from those of known amylases obtained from Gramineae caryopses suggest that this enzyme is a novel type of β -amylase present in cell walls of vigorously elongating Gramineae shoot organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号