首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascidian eggs and zygotes were whole-cell voltage-clamped and inward membrane currents, generated by stepping the membrane potential, studied from fertilization up to cytokinesis. Currents, induced by changing the voltage in steps from -80 to -30 mV, or to 0 mV, had maximum amplitudes which ranged from 400 to 1200 pA in the unfertilized egg and 100 to 1300 pA in the zygote. At 5 to 10 min after fertilization it was not possible to generate inward currents owing to the activity of nonspecific fertilization channels. Preceding cytokinesis, we observed a reduction in amplitude of the inward currents. By cutting eggs and zygotes into fragments, we have shown that the ion channels generating these inward currents are symmetrically distributed over the egg plasma membrane, but regionalized in the zygote with a maximum density at the animal pole.  相似文献   

2.
Polarity of the ascidian egg cortex before fertilization.   总被引:5,自引:0,他引:5  
The unfertilized ascidian egg displays a visible polar organization along its animal-vegetal axis. In particular, the myoplasm, a mitochondria-rich subcortical domain inherited by the blastomeres that differentiate into muscle cells, is mainly situated in the vegetal hemisphere. We show that, in the unfertilized egg, this vegetal domain is enriched in actin and microfilaments and excludes microtubules. This polar distribution of microfilaments and microtubules persists in isolated cortices prepared by shearing eggs attached to a polylysine-coated surface. The isolated cortex is further characterized by an elaborate network of tubules and sheets of endoplasmic reticulum (ER). This cortical ER network is tethered to the plasma membrane at discrete sites, is covered with ribosomes and contains a calsequestrin-like protein. Interestingly, this ER network is distributed in a polar fashion along the animal-vegetal axis of the egg: regions with a dense network consisting mainly of sheets or tightly knit tubes are present in the vegetal hemisphere only, whereas areas characterized by a sparse tubular ER network are uniquely found in the animal hemisphere region. The stability of the polar organization of the cortex was studied by perturbing the distribution of organelles in the egg and depolymerizing microfilaments and microtubules. The polar organization of the cortical ER network persists after treatment of eggs with nocodazole, but is disrupted by treatment with cytochalasin B. In addition, we show that centrifugal forces that displace the cytoplasmic organelles do not alter the appearance and polar organization of the isolated egg cortex. These findings taken together with our previous work suggest that the intrinsic polar distribution of cortical membranous and cytoskeletal components along the animal-vegetal axis of the egg are important for the spatial organization of calcium-dependent events and their developmental consequences.  相似文献   

3.
We have used whole-mount immunofluorescence microscopy of late-stage Xenopus laevis oocytes and early embryos to examine the organization of their cortical cytokeratin systems. In both mature oocytes and early embryos, there is a distinct animal-vegetal polarity in cytokeratin organization. In mature (stage-VI) oocytes, the cytokeratin filaments of the vegetal region form a unique, almost geodesic network; in the animal region, cytokeratin organization appears much more variable and irregular. In unfertilized, postgerminal vesicle breakdown eggs, the cortical cytokeratin system is disorganized throughout both animal and vegetal hemispheres. After fertilization, cytokeratin organization reappears first in a punctate pattern that is transformed into an array of oriented filaments. These cytokeratin filaments appear first in the vegetal hemisphere and are initially thin. Subsequently, they form bundles that grow thicker through the period of first to second cleavage, at which point large cytokeratin filament bundles form a loose, fishnet-like system that encompasses the vegetal portion of each blastomere. In the animal region, cytokeratin filaments do not appear to form large fibre networks, but rather appear to be organized into a system of fine filaments. The animal-vegetal polarity in cytokeratin organization persists until early blastula (stage 5); in later-stage embryos, both animal and vegetal blastomeres possess qualitatively similar cytokeratin filament systems. The entire process of cytokeratin reorganization in the egg is initiated by prick activation. These observations indicate that the cortical cytoskeleton of Xenopus oocytes and early embryos is both dynamic and asymmetric.  相似文献   

4.
The unfertilized egg of the newt, Cynops pyrrhogaster, has a second meiotic spindle at the animal pole and numerous cortical cytasters. After physiologically polyspermic fertilization, all sperm nuclei incorporated into the egg develop sperm asters, and the cortical cytasters change into bundles of cortical microtubules. The size of the sperm asters in the animal hemisphere is ∼5.6-fold larger than that in the vegetal hemisphere. Only one sperm nucleus moves toward the center of the animal hemisphere to form a zygote nucleus with the egg nucleus. This movement is inhibited by nocodazole, but not by cytochalasin B. The centrosome in the zygote nucleus divides into two parts to form a bipolar spindle for the first cleavage synchronously with the nuclear cycle, but centrosomes of accessory sperm nuclei in the vegetal hemisphere remained to form monopolar interphase asters and subsequently degenerate around the first cleavage stage. The size of sperm asters in monospermically fertilized Xenopus eggs was ∼37-fold larger than those in Cynops eggs. Since sperm asters that formed in polyspermically fertilized Xenopus eggs exclude each other, the formation of a zygote nucleus is inhibited. Cynops sperm nuclei form larger asters in Xenopus eggs, whereas Xenopus sperm nuclei form smaller asters in Cynops eggs compared with those in homologous eggs. Since there was no significant difference in the concentration of monomeric tubulin between those eggs, the size of sperm asters is probably regulated by a component(s) in egg cytoplasm. Smaller asters in physiologically polyspermic newt eggs might be useful for selecting only one sperm nucleus to move toward the egg nucleus. Mol. Reprod. Dev. 47:210–221, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Sperm entry in the egg of the painted frog, Discoglossus pictus, occurs only at a specialized region of the animal hemisphere called the animal dimple, a structure not found in other species of frog. An extracellular vibrating electrode was used to measure the activation current to determine if the ion channels that open to generate the fertilization potential are localized in this region. Eggs that were activated by microinjecting inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) exhibited activation potentials very similar to those of fertilized eggs. There was a delay between the time of Ins(1,4,5)P3 injection and the initiation of the activation potential that was proportional to the distance between the site of the activating stimulus and the animal dimple, similar to the delay previously observed in prick-activated eggs (R. Talevi, B. Dale, and C. Campanella (1985). Dev. Biol. 111, 316-323). The delay lasted 30 sec when the stimulus site was 20 degrees (300 micron) from the animal dimple and 14 min when it was 150 degrees C from the dimple. Once the activation potential was initiated, there was an excellent temporal correlation between the time of depolarization and the time of the first detectable current entering the dimple region. This inward current was typically 60 microA/cm2 in amplitude and was found only in the central 200 micron of the dimple region. The outward current was distributed over the remainder of the egg surface and was much smaller in amplitude. The activation current was carried by Cl- efflux in the animal dimple region, and was reduced by DIDS and reversed by high external Cl- or I-. The occurrence of inward current only at the dimple region indicates that Cl- channels which open to produce the activation potential are localized there. Using Ca2+-specific microelectrodes, we found that [Ca2+]i increased from 0.25 to 2 microM following both fertilization and activation and returned to the unactivated level after about 37 min. Immature oocytes of D. pictus were also studied with the vibrating probe and the inward current in these cells was much less localized than that in the activating egg. A steady transcellular current of up to 4 microA/cm2 entered the entire animal hemisphere of the oocyte and exited the vegetal hemisphere.  相似文献   

6.
The distribution of pigment granules in eggs of three species of sea urchins is described with reference to developmental stage and an egg's animal-vegetal axis of organization. Polarity in unfertilized sea urchin eggs has been a debated subject; present evidence demonstrates that the animal-vegetal axis is established before fertilization. The pigment pattern in some batches of Paracentrotus eggs exhibiting the celebrated “pigment band,” originally described by Theodor Boveri, is revised and is interpreted as a comparatively precocious expression of the underlying egg polarity. “Unbanded” Paracentrotus eggs and eggs of Arbacia lixula and Arbacia punctulata can be induced to exhibit the same pigment pattern by artificial activation. The induced pigment pattern aligns with an axis defined by polar bodies and the jelly canal, which are two external markers of the animal pole which are only rarely seen. It is therefore concluded that all of these eggs possess an animal-vegetal axis before fertilization even though it usually remains unexpressed until later developmental stages. Polarized changes in pigmentation are consistent with the following general mechanism: A change is triggered in the cortex of the vegetal pole; the change is programmed for a time which corresponds to the fourth mitotic division, even though mitosis itself is not involved; activation at fertilization initiates the “clock” in most cases, although in “banded” Paracentrotus eggs the “clock” is apparently started before ovulation; only the vegetal hemisphere's pigment is affected by the change. The nature of the underlying axis which defines animal and vegetal poles is discussed. Aspects of the axis have been tentatively traced back to the primary oocyte stage, but its fundamental nature remains unknown.  相似文献   

7.
The wave of activation current in the egg of the medaka fish   总被引:4,自引:0,他引:4  
An extracellular vibrating electrode was used to measure the ring-shaped wave of inward current, the activation current, that propagates at 10 micron/sec across the egg of the medaka fish, Oryzias latipes, from the site of sperm-egg fusion at the animal pole to the vegetal pole. This activation wave is due to a localized increase in the conductance to Na+, K+, and Ca2+ and reflects the propagated opening of these ion channels. The earliest detectable current begins to enter the animal pole 20 sec after the initiation of the fertilization potential, so the first ion movements responsible for the fertilization potential are below the resolution of the vibrating probe system. These channels are present in both the animal and vegetal hemispheres, but the magnitude of the activation current is about seven times greater in the animal hemisphere. An outward current of smaller magnitude and spread out over a larger area precedes and follows the inward current except at the point of fertilization where the current is first inward. The current direction is dependent on the external Na+ concentration, and in the more physiological solution of 10% NaCl-Yamamoto's Ringer's, its direction reverses to become outward, apparently carried by K+ efflux. Raising the external Ca2+ in this same low-Na+ medium reverses the current so that it becomes inward again and increases the propagation velocity of the wave, suggesting a Ca2+ component to the inward current. Current enters a given region on the egg's surface about 16 sec before any vesicle fusion occurs in that region. Iontophoresis of inositol-1,4,5,-trisphosphate immediately triggers egg activation with a minimum activating charge of 0.6 nC.  相似文献   

8.
Summary The fertilized egg of the mollusc Lymnaea stagnalis generates a polarized current pattern as measured with the vibrating probe. Here we investigated the basis of these polar ionic currents. Ionic currents were measured around eggs during the second meiotic division after interference with cytokinesis. Cytokinesis was either displaced by centrifugation or inhibited with cytochalasin or nocodazole. Furthermore, ectopic constrictions were induced with lectin treatment. It appeared that the inward current of the animal pole can be displaced by centrifugation and remains associated with the position of the meiotic apparatus. The influence of the meiotic apparatus on the polar current pattern seems to be directly related to membrane constrictions rather than to karyokinesis. This was demonstrated by a change in current density after induction of an ectopic constriction at the vegetal pole and by the abolishment of currents after cytochalasin treatment. Since the location of the outward current was not sensitive to centrifugation, it may be concluded that the vegetal outward current depends upon properties of the vegetal cortex. On the basis of these results, we conclude that the Lymnaea egg generates two types of ionic currents during the second meiotic division. The first is an inward current activated at the site of membrane constrictions. The second is an outward current associated with the vegetal cortex.  相似文献   

9.
Identification and cloning of localized maternal RNAs from Xenopus eggs   总被引:59,自引:0,他引:59  
A central question in developmental biology is to explain how cells in different regions of an embryo acquire different developmental fates. We have begun to address this question by investigating whether specific RNAs are localized within a frog egg. Differential screening of a cDNA library shows that most maternal RNAs are uniformly distributed along the animal-vegetal axis. However, we find that a rare class of maternal RNAs is localized. cDNA clones of four localized RNAs have been characterized. Three of these cDNAs are derived from maternal RNAs that are concentrated in the animal hemisphere of unfertilized eggs and remain localized through the early blastula stage. One cDNA is derived from a maternal RNA found almost exclusively in the vegetal hemisphere at both stages. These studies show that some informational molecules, specifically RNAs, are localized in eggs and are inherited by particular blastomeres.  相似文献   

10.
11.
A fate map has been constructed for the embryo of Crania. The animal half of the egg forms the ectodermal epithelium of the larva's apical lobe. The vegetal half of the egg forms endoderm, mesoderm, and the ectoderm of the mantle lobe. The vegetal pole is the site of gastrulation; this site becomes the posterior ventral region of the mantle lobe of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg; it bears no relationship to the future plane of bilateral symmetry of the larva. The timing of regional specification was examined by isolating animal, vegetal, or meridional halves from oocytes, eggs, or embryos from prior to germinal vesicle breakdown through gastrulation. Animal halves isolated from oocytes formed either the epithelium of the apical lobe or a larva with all three germ layers. Animal halves isolated from unfertilized eggs and eight-cell embryos formed only apical lobe epithelium. Beginning at the blastula stage, animal halves formed mantle in addition to apical lobe epithelium. In animal halves isolated after gastrulation, the mantle lobe was always truncated. Vegetal halves isolated at all stages prior to gastrulation gastrulated and formed apical and mantle lobes with endoderm and mesoderm; however, the relative size of the apical lobe that formed decreased substantially when vegetal halves were isolated at later developmental stages. When meridional halves were isolated from unfertilized eggs and two- to four-cell embryos, both halves frequently formed normally proportioned larvae. Beginning at the blastula stage, a number of pairs frequently had a member that lacked dorsal setae on its mantle lobe while the other member of the pair formed setae, indicating that the dorsoventral axis had been set up. The process of regional specification in Crania is compared to those of Discinisca and Glottidia in the brachiopod subphylum Linguliformea and Phoronis in the phylum Phoronida.  相似文献   

12.
The wave of activation current in the Xenopus egg   总被引:8,自引:0,他引:8  
A ring-shaped wave of inward current, the activation current, propagates across the Xenopus egg from the site of activation during the positive phase of the activation or fertilization potential. This activation current wave is due to an increased chloride conductance and reflects the propagated of the ionic channels responsible for the fertilization potential. These channels are present in the animal and vegetal hemispheres; however, the magnitude of the activation current is 6-7 times greater in the animal hemisphere. Outward current of a smaller magnitude and spread out over a larger area precedes and follows the inward current except at the point of activation where the current is first inward. The inward current wave is detected in all eggs activated by sperm and in eggs activated by pricking with a sharp needle, by application of the Ca2+ ionophore, A23187, and by intracellular iontophoresis of Ca2+ or inositol 1,4,5-trisphosphate. Reduction of the inward current by TMB-8, which blocks intracellular calcium release in some cells, suggests that the activation current channels are calcium sensitive and that the current wave is concomitant with a wave of increased intracellular calcium initiated by sperm-egg interaction. The wave of cortical granule exocytosis and two or more contraction waves follow the current wave.  相似文献   

13.
Experiments are described, showing the presence of putative nicotinic cholinoreceptors in the egg after fertilization. The experiments were carried out on gametes and early embryos of the sea urchin Paracentrotus lividus, by using nicotinic agonists and antagonists. 1 mM Acetylcholine (ACh), 100 microM nicotine, 100 nM alpha-bungarotoxin (alpha-BuTx) and 100 microM curare inhibit sperm motility and fertilization, while they have no effect on unfertilized eggs. The drugs added within 1 min. after the raising of the fertilization layer had stronger effects on cleavage and development; when added more than 15 min. after the raising of the fertilization layer, they had lesser effects on further development up to pluteus stage. In all the experiments, nicotine was the most effective drug. The binding of fluorescein-labelled alpha-BuTx did not point out any affinity sites on unfertilized eggs, while they were localized on the sperms and on the eggs fertilized by sperms, but not on the eggs activated artificially. The binding was prevented by pretreatment of sperms and activated eggs with 10 nM native alpha-BuTx and 10 microM curare. We conclude that, in the fertilized egg, putative nicotinic cholinoreceptors are present, which are able to bind alpha-BuTx and curare. Fertilization by sperms is needed to trigger the formation of alpha-BuTx receptors.  相似文献   

14.
To identify a molecule involved in sperm‐egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm‐surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti‐SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti‐SGP antibody recognized large molecules, with molecular masses of 65–150 kDa and minor smaller molecules with masses of 20–28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle‐binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm‐egg membrane binding and is responsible for the establishment of fertilization in Xenopus.  相似文献   

15.
The region of the frog egg that is receptive to fertilization was determined. As an approximation to the site of sperm entry, the start of the male pronuclear penetration path within the egg was made visible externally by bleaching fixed eggs. A bleached egg had a pigment accumulation on its surface corresponding to the start of the penetration path. The accumulation characteristically changed shape with cortical movements prior to first cleavage, and most accumulations (path starts) were within 60° of the animal pole.Localized inseminations and an analysis of the distribution of failures of fertilization at the egg plasma membrane demonstrated that few if any sperm entered the vegetal region of the egg. Localized inseminations, however, demonstrated that sperm entered between 60° from the animal pole and the animal-vegetal margin.Although sperm entry occurred throughout the animal region, most penetration paths started within 60° of the animal pole. To account for this, the sperm nucleus must move towards the animal pole prior to starting the penetration path. This movement appeared to be due to a contraction of the cortex towards the animal pole that occurred 3–4 min after activation of the egg.  相似文献   

16.
In Xenopus, the plasma membrane of the unactivated egg is receptive to sperm only in the animal hemisphere (R. Grey, M. Bastiani, D. Webb, and E. Schertel, 1982, Dev. Biol.89, 475–487). The reinsemination experiments of investment-free eggs reported in this paper demonstrate that functional sperm entry is lost after activation. Supernumerary sperm were excluded even though the fertilization envelope was absent and the membrane potential had returned to the level found in the unfertilized egg. Even when the electrical block to polyspermy was suppressed by 40 mM NaI (which reduces the membrane potential), polyspermy could be induced only if denuded eggs were initially inseminated in this medium. We estimate that the loss of functional sperm entry, independent of the electrical block, occurs during the first 10 min following fertilization. Sperm readily adhere to the surface of the animal hemisphere of unactivated eggs divested of their extracellular coats, but they do not adhere to the surface of activated eggs. Denuded eggs also adhere to each other, with the surface of the animal hemisphere of unactivated eggs exhibiting the greatest degree of adhesivity. We used electric field-induced fusion (EFIF), without prior dielectrophoresis, to quantify the regional and temporal adhesiveness of eggs. At electric field strengths greater than 8 V/cm, the probability of fusion during EFIF is highest with the animal hemisphere of unactivated eggs, moderate with both the vegetal hemisphere of unactivated eggs and the animal hemisphere of activated eggs, and lowest with the vegetal hemisphere of activated eggs. When pairs of eggs are constructed with different hemispheres in contact, the fusion characteristics of the pair are similar to the more adhesive member of the pair. The regional and temporal differences in the adhesiveness of the Xenopus egg surface correlate with its receptivity to sperm and could possibly account for the plasma membrane's activation-induced loss of functional sperm entry.  相似文献   

17.
《Developmental biology》1996,180(1):108-118
Previous experiments from our lab have suggested that the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is required for sperm-induced egg activation inXenopus laevis.Here we measure the endogenous production of both Ins(1,4,5)P3and PIP2during the sperm-induced and ionomycin-induced calcium wave in the egg and find that both increase following fertilization. Ins(1,4,5)P3increases 3.2-fold from an unfertilized egg level of 0.13 pmole per egg (0.29 μM) to a peak of 0.42 pmole per egg (0.93 μM) as the calcium wave reaches the antipode in the fertilized egg. This continuous production of Ins(1,4,5)P3during the time that the Ca2+wave is propagating across the egg suggests the involvement of Ins(1,4,5)P3in wave propagation. This increase in Ins(1,4,5)P3is smaller in ionomycin-activated eggs than in sperm-activated eggs, suggesting that the sperm-induced production of Ins(1,4,5)P3involves a PIP2hydrolysis pathway that is not simply raising intracellular Ca2+. While one might expect PIP2levels to fall as a result of hydrolysis, we find that PIP2actually increases 2-fold. The total lipid fraction in unfertilized egg exhibits 0.8 pmole PIP2per egg and this increases to 1.5 pmole as the calcium wave reaches the antipode. The PIP2concentration peaks 2 min after the completion of the calcium wave at 1.8 pmole per egg. The amount of PIP2in the animal and vegetal hemispheres of the egg was also measured by cutting frozen eggs in half. The vegetal hemisphere contained twice the amount of PIP2as the animal hemisphere but it also contained twice the amount of lipid. Thus, there was an equivalent amount of PIP2normalized to lipid in each hemisphere. Isolated animal and vegetal hemisphere cortices exhibit similar PIP2concentrations, suggesting that the 2-fold higher total PIP2in the vegetal half is not due to a gradient of PIP2in the plasma membrane, but rather implies that cytoplasmic organelle membranes also contain PIP2.  相似文献   

18.
Xenopus laevis eggs and gastrula stage embryos were fractionated into three equal sections normal to the animal-vegetal axis, and poly(A)+ RNA was isolated from each section. Hybridization of these poly(A)+ RNAs with [32P]cDNA synthesized using animal or vegetal poly(A)+ RNAs showed no detectable differences in the extents or rates of reaction. Thus, the vast majority of poly(A)+ RNAs are not segregated along the animal-vegetal axis. To increase the sensitivity of these experiments, [32P]cDNAs were prepared which had reduced levels of RNA sequences from the animal region of the gastrula stage embryo or spawned unfertilized egg. Hybridization reactions with these probes showed that 3 to 5% of the input cDNA represents poly(A)+ RNA sequences enriched 2- to 20-fold in the vegetal region of the egg or gastrula stage embryo.  相似文献   

19.
In insects, egg activation is known to occur in vivo and independently of fertilization, but its mechanisms are poorly understood. To gain understanding of these mechanisms, an attempt was made to activate the egg of Gryllus bimaculatus in vitro. It was found that meiosis resumed and was completed in unfertilized eggs treated with hypotonic buffer. Early developmental processes in activated, unfertilized eggs were investigated and compared with those in fertilized eggs. Mitosis did not progress, resulting in formation of anucleate cytoplasmic islands (pseudoenergids). Development in the activated, unfertilized eggs stopped at this stage and both yolk subdivision and cellularization did not occur. To elucidate the role of the nucleus in the developmental process to the syncytial stage in fertilized eggs, eggs were treated with aphidicolin to inhibit DNA polymerization. It was found that pseudoenergids also formed in these aphidicolin-treated fertilized eggs. These results demonstrate that pseudoenergids can increase in number independently of nuclei, suggesting that the cytoplasm rather than the nucleus plays the primary role in development to the syncytial stage in G. bimaculatus.  相似文献   

20.
Fertilized and unfertilized eggs of Cynops pyrrhogaster were examined by light and electron microscopy. In fertilized eggs that have just been laid, there are numerous small cytoplasmic patches free of granules in the pigmented layer of the animal hemisphere. Many of these granule-free cytoplasmic islets gradually grow out subcortically from the pigmented layer and fuse to form a subcortical layer of yolk-free cytoplasm of varying thickness by the time of the first cleavage division. The cytoplasmic islets are present in 100% of the fertilized eggs, but not in unfertilized eggs. Electron microscopic observations showed that the cytoplasmic islets contain tubules and that development of a complex system of cortical tubules constitutes the basis of the early growth of the cytoplasmic islets. The cortical tubules are transient structures and are no longer observable a few hours after the eggs are laid. These phenomena are considered to be a response of the egg to the fertilization stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号