首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cephalopod chromatophores are made of a central pigment cell surrounded by 10 to 20 radially arranged muscle fibres under direct nervous control. Innervation of these muscle fibres was studied with anterograde cobalt fills of peripheral nerve bundles and light and electron microscopy. Individual axons branch repeatedly to innervate the muscles of chromatophores scattered over several millimeters. Axons contained in several dermal nerves converge to innervate the same chromatophores. Among the chromaophores, axons were found running either singly or in small bundles, often accompanied by sheath cells. Single chromatophore muscles were innervated by at least one axon running across or along its length. Since nerves terminating on chromatophore muscles are very rare, neuromuscular contact seems to be made en passant. Varicosities of the axons apposed to the muscles are thought to be presynaptic sites. However, morphological differentiations of the pre-or post-synaptic membranes were not visible. Two types of innervating processes were found containing either electron-clear or a mixture of electron-clear and dark-core synaptic vesicles.Supported by a postgraduate award from the University of Aberdeen (GB)  相似文献   

2.
The chromatophores of cephalopods differ fundamentally from those of other animals: they are neuromuscular organs rather than cells and are not controlled hormonally. They constitute a unique motor system that operates upon the environment without applying any force to it. Each chromatophore organ comprises an elastic sacculus containing pigment, to which is attached a set of obliquely striated radial muscles, each with its nerves and glia. When excited the muscles contract, expanding the chromatophore; when they relax, energy stored in the elastic sacculus retracts it. The physiology and pharmacology of the chromatophore nerves and muscles of loliginid squids are discussed in detail. Attention is drawn to the multiple innervation of dorsal mantle chromatophores, of crucial importance in pattern generation. The size and density of the chromatophores varies according to habit and lifestyle. Differently coloured chromatophores are distributed precisely with respect to each other, and to reflecting structures beneath them. Some of the rules for establishing this exact arrangement have been elucidated by ontogenetic studies. The chromatophores are not innervated uniformly: specific nerve fibres innervate groups of chromatophores within the fixed, morphological array, producing 'physiological units' expressed as visible 'chromatomotor fields'. The chromatophores are controlled by a set of lobes in the brain organized hierarchically. At the highest level, the optic lobes, acting largely on visual information, select specific motor programmes (i.e. body patterns); at the lowest level, motoneurons in the chromatophore lobes execute the programmes, their activity or inactivity producing the patterning seen in the skin. In Octopus vulgaris there are over half a million neurons in the chromatophore lobes, and receptors for all the classical neurotransmitters are present, different transmitters being used to activate (or inhibit) the different colour classes of chromatophore motoneurons. A detailed understanding of the way in which the brain controls body patterning still eludes us: the entire system apparently operates without feedback, visual or proprioceptive. The gross appearance of a cephalopod is termed its body pattern. This comprises a number of components, made up of several units, which in turn contains many elements: the chromatophores themselves and also reflecting cells and skin muscles. Neural control of the chromatophores enables a cephalopod to change its appearance almost instantaneously, a key feature in some escape behaviours and during agonistic signalling. Equally important, it also enables them to generate the discrete patterns so essential for camouflage or for signalling. The primary function of the chromatophores is camouflage. They are used to match the brightness of the background and to produce components that help the animal achieve general resemblance to the substrate or break up the body's outline. Because the chromatophores are neurally controlled an individual can, at any moment, select and exhibit one particular body pattern out of many. Such rapid neural polymorphism ('polyphenism') may hinder search-image formation by predators. Another function of the chromatophores is communication. Intraspecific signalling is well documented in several inshore species, and interspecific signalling, using ancient, highly conserved patterns, is also widespread. Neurally controlled chromatophores lend themselves supremely well to communication, allowing rapid, finely graded and bilateral signalling.  相似文献   

3.
The chromatophore system on the tracheal bladders of the phantom larva of Chaoborus crystallinus has been investigated by light and electron microscopy. The pigment cells are attached to a restricted region of the outer surface of the bladders and have the capacity to change both their shape and position on the bladder in response to changes in background illumination. The whole pigment system is tightly spanned by an extracellular membrane, which is in contact with two small muscles inserting at the anterior inner wall of the bladders.Nachdem das Manuskript eingereicht worden war, ist Walter Weber verstorben. An seiner Stelle hat Herr Dr. Lehmann (Köln) zur Fertigstellung der Druckfassung der Arbeit beigetragen  相似文献   

4.
The morphology and organization of chromatophores in the neotropical glass-frog, Centrolenella fleischmanni (family Centrolenidae), were studied with both light and electron microscopes. Four types of pigment cells are described in the dorsal skin. The fine structure of two chromatophores corresponds to the typical amphibian xanthophore and iridophore; one is similar to the unusual melanophore found in phyllomedusine hylids; the fourth cell type is unlike any chromatophore previously described. Pigment granules in the unusual chromatophore are moderately electron-dense and have an irregular shape, suggesting a fluid composition. This pigment appears to be laid down in organelles similar in appearance to pterinosomes. The organization of pigment cells in this species differs from that of other green, leaf-sitting frogs in that there are few discrete groups resembling “dermal chromatophore units.” It is suggested that the unusual new pigment cell contributes significantly to the overall green color of C. fleischmanni.  相似文献   

5.
Summary The barred pigment pattern (Lehman 1957) of the axolotl larva is best observed from stage 41 onwards, where it already consists of alternating transverse bands of melanophores and xanthophores along the dorsal side of the trunk. The present study investigateswhen the two populations of neural crest derived chromatophores, melanophores and xanthophores become determined andhow they interact to create the barred pigment pattern. The presence of phenol oxidase (tyrosinase) in melanophores (revealed by dopa incubation) and pteridines in xanthophores (visualized by fluorescence) were used as markers for cell differentiation in order to recognize melanophores and xanthophores before they became externally visible. It was found that melanophores and xanthophores were already determined in the premigratory neural crest, at stages 30/31 and 35–36, respectively. Between stages 35–36 and 38 they were arranged in a prepattern of several distinct, mixed chromatophore groups along the dorsal trunk, morphologically correlated in the scanning electron microscope with humps on the original crest cell string. While the occurrence of xanthophores was restricted to the chromatophore groups and around them, melanophores were already uniformly distributed in the dorsolateral flank area, having migrated from trunk neural crest portions including the groups. The bar component of the pigment pattern was subsequently initiated by xanthophores, which caused melanophores in and around the chromatophore groups to fade or become invisible. The barred pattern was established by the formation of alternating clusters of like cells, melanophores and xanthophores.  相似文献   

6.
Unshelled cephalopods have a remarkable ability to alter theirappearance, using textural, postural, and chromatic elementsto generate a myriad of body patterns. Of the unshelled cephalopods,it is generally acknowledged that cuttlefish express the mostdetailed and widest range of body patterns, including staticand dynamic patterns. In this paper we present data on the neuronalmechanisms underlying this amazing behavior, focusing on theneuroregulation of the chromatic elements, the chromatophoreorgans, in the European cuttlefish Sepia officinalis. Cephalopodchromatophore organs, including those in Sepia, are unlike thosein any other animal taxa; each consists of a pigment-containingchromatophore cell that expands in response to the coordinatedactivation of a set of radial muscles which are directly attachedto the chromatophore cell. We show that the chromatophore musclesare regulated by 2 different excitatory transmitters, glutamateand the family of FMRFamide-related peptides (FaRPs). Glutamatemediates rapid and transient chromatophore cell expansion whereasthe FaRPs are responsible for slower, more sustained responses.Using retrograde dye filling, immunocytochemical and in situhybridization techniques, we demonstrate that the cell bodiesof the glutamatergic and FaRPs-containing motoneurons innervatingthe fin chromatophore muscles are primarily localized to theposterior chromatophore and fin lobes in the posterior subesophagealmass of the Sepia brain. Data are also presented showing thatsome fin chromatophore motoneurons have multiple axons in differentnerve branches, which accounts for overlapping chromatophoremotor fields by adjacent peripheral nerves.  相似文献   

7.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

8.
Despite decades of work on the neuromuscular physiology of crustacean leg muscles, little is known about how physiological differences between these muscles relate to their behavioral usage. We studied a sideways walking shore crab, Carcinus maenas, and a forward walking spider crab, Libinia emarginata, as part of our work to understand the neural control of locomotion. The two species differed significantly in facilitation at neuromuscular junctions for every muscle studied. Further, these differences are correlated exactly with the walking use of the muscles. The forward walking spider crab showed more facilitation in muscles which operate joints having larger ranges of motion in forward walking. Likewise, greater facilitation was seen in muscles more active during sideways walking in the predominantly sideways walking shore crab. These differences even occur between muscles innervated by the same motor neuron, and become more evident with higher stimulus frequency. The increased presynaptic facilitation might allow selective recruitment of fibers innervated by the same motor neuron and aid in temporal filtering. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Division and plastic remodelling of the highly differentiated chromatophore inStigeoclonium stagnatile (Hazen)Collins is followed in living cells during their life cycle. In contradistinction to the unicellular algae both processes are separated: During the cell division, when the cell is growing, the highly differentiated chromatophore is simply divided without plastic remodelling and its division is finished before the nuclear division starts. The mode of the chloroplast division is identical with that of other algae. In contrast, during zoospore formation plastic remodelling of the chromatophore takes place: The lobed gutter-shaped chromatophore is transformed into a cup-like one which is adapted to the shape of the zoospore. After the zoospore has changed into a germling the cupshaped chromatophore is turned again into the original lobed gutter-like form of the vegetative cells. The precursory chromatophore division with regard to mitosis as well as the uniform mode of chromatophore division in various algae is stressed.
  相似文献   

10.
The cyclostome bryozoans constitute an old and divergent group of bryozoans, whose muscle and nervous systems are poorly known. The entire neuromuscular system of the cyclostome Crisia eburnea is here mapped with phalloidin, DAPI and antibodies directed against acetylated α-tubulin and serotonin. Innervation of most muscles as well as the ganglion of C. eburnea is described, and several new details are reported, for example, on the additional and branched ectodermal muscles of the cystid, the presence of subtentacular muscles, the retractor muscles being distinctly striated and the presence of an additional pair of lateroabfrontal nerves in the proximal part of the tentacles. The serotonin-like immunoreactivity in the nervous system of C. eburnea shares many features with those of the other bryozoans studied so far, which probably reflects a common ancestry of the neural architecture. However, the nervous system shows somewhat less complexity compared to that of the sister clade, Eurystomata, and contains fewer cells and nerves compared to the cyclostome Cinctipora which has much larger zooids and more than eight tentacles. No interzooidal neural connections were found in C. eburnea, which is in agreement with the individual response of the zooids.  相似文献   

11.
Summary Rapid, physiological color changes seen in the skin of cephalopods are due to a unique anatomical system composed of chromatophore organs and iridophores. The morphology and ultrastructure of the chromatophores was studied in the squids Loligo pealii Lesueur and Loligo opalescens Berry. A three-dimensional model of a brown chromatophore was reconstructed from serial sections for the electron microscope.The chromatophore organ is composed of a central nucleated pigment cell, 10–30 obliquely striated muscle cells (radially arranged on the equator of the pigment cell), axons, Schwann cells, and sheath cells. The pigment cell consists of a central aggregation of pigment granules and surrounding peripheral cytoplasmic compartments. These regions are incompletely separated by an electron-dense, sac-like structure, the pigment container. Proximal portions of a muscle cell contact the pigment cell in regions called myo-chromatophore junctions. Neuromuscular and myo-muscular junctions are also present.The results presented are discussed in terms of previous morphological and physiological studies of chromatophores.Part of a study submitted in partial fulfillment of the requirement for the degree of Ph. D. (Anatomy), the Graduate School of Basic Medical Sciences, New York Medical College, New York, N.Y. 10029.The research reported here was in part supported by grants from the Health Research Council of the City of New York (U-1008) and United States Public Health Service, General Research Grant No. FR-05398.Report on some of this material was given at the Annual Meeting of the American Association of Anatomists, Philadelphia, Pennsylvania, April 19–22, 1971.  相似文献   

12.
Summary The sequence of morphological changes in the retinal pigment epithelium during the metamorphic period of the sea lamprey Petromyzon marinus L. has been investigated using electron microscopy. At early metamorphic stages (stages I and II), photoreceptors are present in a small zone of the retina. During these stages, the lateral surface of the epithelial cells shows zonulae occludentes and adhaerentes. The degree of cell differentiation varies throughout the retinal pigment epithelium. Cells covering the differentiated photoreceptors in the central retina have phagosomes, whereas pigment granules appear only in the retinal pigment epithelium dorsal to the optic nerve head. Most epithelial cells have myeloid bodies; their morphology is more complex around the optic nerve head. At stage III, when photoreceptors develop over the whole retina, the distribution of cytoplasmic organelles is almost homogeneous in the retinal pigment epithelium. Subsequently, the basal plasma membrane of the epithelial cells becomes progressively folded and their apical processes enlarged. In addition, extensive gap junctions develop between retinal pigment cells. In late metamorphic stages, noticeable growth of myeloid bodies occurs and consequently the retinal pigment epithelium resembles that of the adult. This study also describes, for the first time, the presence of wandering phagocytes in the retinal pigment epithelium of lampreys; their role in melanosome degradation is discussed.  相似文献   

13.
Coleoid cephalopods adaptively change their body patterns (color, contrast, locomotion, posture, and texture) for camouflage and signaling. Benthic octopuses and cuttlefish possess the capability, unique in the animal kingdom, to dramatically and quickly change their skin from smooth and flat to rugose and three‐dimensional. The organs responsible for this physical change are the skin papillae, whose biomechanics have not been investigated. In this study, small dorsal papillae from cuttlefish (Sepia officinalis) were preserved in their retracted or extended state, and examined with a variety of histological techniques including brightfield, confocal, and scanning electron microscopy. Analyses revealed that papillae are composed of an extensive network of dermal erector muscles, some of which are arranged in concentric rings while others extend across each papilla's diameter. Like cephalopod arms, tentacles, and suckers, skin papillae appear to function as muscular hydrostats. The collective action of dermal erector muscles provides both movement and structural support in the absence of rigid supporting elements. Specifically, concentric circular dermal erector muscles near the papilla's base contract and push the overlying tissue upward and away from the mantle surface, while horizontally arranged dermal erector muscles pull the papilla's perimeter toward its center and determine its shape. Each papilla has a white tip, which is produced by structural light reflectors (leucophores and iridophores) that lie between the papilla's muscular core and the skin layer that contains the pigmented chromatophores. In extended papillae, the connective tissue layer appeared thinner above the papilla's apex than in surrounding areas. This result suggests that papilla extension might create tension in the overlying connective tissue and chromatophore layers, storing energy for elastic retraction. Numerous, thin subepidermal muscles form a meshwork between the chromatophore layer and the epidermis and putatively provide active papillary retraction. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Summary We used physiological recordings, intracellular dye injections and immunocytochemistry to further identify and characterize neurons in the buccal ganglia of Aplysia calif ornica expressing Small Cardioactive Peptide-like immunoreactivity (SCP-LI). Neurons were identified based upon soma size and position, input from premotor cells B4 and B5, axonal projections, muscle innervation patterns, and neuromuscular synaptic properties. SCP-LI was observed in several large ventral neurons including B6, B7, B9, B10, and B11, groups of s1 and s2 cluster cells, at least one cell located at a branch point of buccal nerve n2, and the previously characterized neurons B1, B2 and B15.B6, B7, B9, B10 and B11 are motoneurons to intrinsic muscles of the buccal mass, each displaying a unique innervation pattern and neuromuscular plasticity. Combined, these motoneurons innervate all major intrinsic buccal muscles (I1/I3, I2, I4, I5, I6). Correspondingly, SCP-LI processes were observed on all of these muscles. Innervation of multiple nonhomologous buccal muscles by individual motoneurons having extremely plastic neuromuscular synapses, represents a unique form of neuromuscular organization which is prevalent in this system. Our results show numerous SCPergic buccal motoneurons with widespread ganglionic processes and buccal muscle innervation, and support extensive use of SCPs in the control of feeding musculature.Abbreviations SCP-LI small cardioactive peptide-like immunoreactivity - PSC postsynaptic current - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - FI facilitation index - TMR time to maximal response  相似文献   

15.
The ultrastructure and chemical composition of reflective organelles in the anterior pigment epithelium of the iris of the European starling Sturnus vulgaris were examined. The reflective organelles produced a diffuse white reflectance at the iris mid-section which was visible only when the stroma was removed. The pigment granules were clear, angular, and birefringent under the light microscope. In electron micrographs the granules were irregular in shape and density, sometimes crystalline in appearance, but more often they were lost during sectioning or staining. Guanine was abundant in the modified pigment epithelium of the starling, but not in the pigment epithelia of other birds that lacked birefringent granules. Pteridines, such as xanthopterin and leucopterin, were present in small amounts. Pteridines were also present in the iris stroma which had no reflective organelles. The reflective organelles in the starling pigment epithelium resemble both the reflecting platelets of lower vertebrate chromatophores and the reflective granules in the tapeta of various vertebrates. Possible derivation of the organelles from these sources is discussed.  相似文献   

16.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   

17.
In the holothurian Eupentacta fraudatrix,the gut wall exhibits trilaminar organization. It consists of an inner digestive epithelium, a middle layer of connective tissue, and an outer mesothelium (coelomic epithelium). The pharynx, esophagus, and stomach are lined with a cuticular epithelium composed of T-shaped cells. The lining epithelium of the intestine and cloaca lacks a cuticle and consists of columnar vesicular enterocytes. Mucocytes are also encountered in the digestive epithelium. The connective tissue layer is composed of a ground substance, which houses collagen fibers, amoebocytes, morula cells, and fibroblasts. The gut mesothelium is a pseudostratified epithelium, which is dominated by peritoneal and myoepithelial cells and also includes the perikarya and processes of the neurons of the hyponeural plexus and vacuolated cells.  相似文献   

18.
Cephalopod body patterning is a most complex invertebrate behavior. Generated primarily by pigment-containing chromatophore organs, this behavior enables rapid alteration of body coloration as a result of direct innervation of chromatophores by motoneurons. This study focuses on location and arrangement of fin chromatophore motoneurons in the cuttlefish Sepia and investigates the possibility of central topography. Retrograde labeling of topographically arranged fin nerve branches in the periphery revealed the posterior subesophageal mass (PSEM) of the brain as the primary location of fin chromatophore motoneurons; within this region, most cells were located in the posterior chromatophore and fin lobes. Additionally, a small percentage of labeled motoneurons occurred in the anterior subesophageal mass and the stellate ganglia. Data from three-dimensional reconstructions of PSEMs showed the arrangement of labeled motoneurons within individual lobes; these data suggest no obvious topographic arrangement. Further, electrical stimulation of the PSEM generated chromatophore activity on the fin and mantle. These stimulation results, coupled with the retrograde labeling, suggest that chromatophore motoneurons are located across multiple PSEM lobes.  相似文献   

19.
Summary The ultrastructure of the accessory outer segment (AOS) — a ciliumlike structure emanating from the inner segment and running alongside the outer segment of photoreceptors — is described. The AOS occurs in both rods and cones of Poecilia reticulata. Its ultrastructure, including the arrangement of microtubules, which originate from the ciliary stalk, is the same in rods and cones. The cone-AOS is connected with the outer segment by a thin plasmabridge, whereas the rod-AOS lies embedded within the outer segment. The outer segment of the cone, in contrast to that of the rod, is separated from the pigment epithelium by a large extracellular space. An intimate contact, however, is secured by the AOS; its membrane is closely appositioned to the pigment epithelium membrane. The functional significance of the AOS and its possible occurrence in other vertebrate classes, are discussed.  相似文献   

20.
Summary Urastoma cyprinae (Graff) is a microturbellarian which has been recorded both as a free-living organism by Westblad (1955) and Marcus (1951) and as a commensal in various lamellibranch molluscs (see Burt & Drinnan 1968). The material used in this study came from oysters, Crassostroea virginica, collected off the coast of Prince Edward Island, in which hosts it occurs in large numbers especially during the summer months when the oysters are spawning (Fleming et al. 1981). When U. cyprinae is exposed to light as happens, for example, when an oyster is opened, it shows a marked negative phototactic response.Preliminary work on the fine structure of the photoreceptors in U. cyprinae shows that the two eyes each consists of: (1) a single cup cell full of relatively large, electron-dense pigment granules; (2) a tripartite conical lens system; and (3) what appear to be two photosensitive rhabdomes. The pigment cup cell has a single, well defined nucleus situated basally and close to the membrane of the pigment cell furthest away from the rhabdomeres. The lens system consists of a cone made up of three, separate but equal, parts. Each part has two, flat inner surfaces which join at an angle of 120°, an outer rounded surface, and a rounded upper surface. When these three parts fit together, the cone-shaped lens is formed with the apex of the lens within the cup of the pigment cell and the rounded, convex, broad end of the cone lying more or less at the same level as the top of the pigment cup and below the epidermis layer. The rhabdomeres lie between the electron dense lenses and the inside of the pigment cup. They show connections to the visual cells which are bipolar: one extension joining the rhabdomeres; the other constituting the axon which extends into the centrally situated brain or into the longitudinal, lateral nerves. The axons that enter the brain, form connections with other axons from the other eye. The axons that extend posteriorly in a lateral position, presumably play a role in facilitating the avoidance reaction.The chemical nature of the unusual lens has not yet been determined. This is presently under investigation and will be reported later at which time our work will be discussed in relation to other types of rhabdomeric eyes in the Turbellaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号