首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river.  相似文献   

2.
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.  相似文献   

3.
In flow cytometric analyses of marine prokaryotic picoplankton often two populations with distinct differences in their apparent nucleic acid content are discernable, one with a high and one with a low nucleic acid content (HNA and LNA, respectively). In this study we determined the phylogenetic composition of flow cytometrically sorted HNA and LNA populations, collected at six stations along a transect across three oceanic provinces from Iceland to the Azores. Catalysed reporter deposition fluorescence in situ hybridisation (CARD-FISH) analysis of sorted cells revealed distinct differences in phylogenetic composition between the LNA and HNA populations with only little overlap. At all stations the LNA population was dominated by the alphaproteobacterial clade SAR11 (45–74%). Also, Betaproteobacteria were always present at 2–4%. While the LNA composition was rather stable, the HNA populations were composed of distinct phylogenetic clades in the different oceanic provinces of Arctic and Tropics. For example Cyanobacteria dominated the North Atlantic Gyre HNA population (29–44%) with Prochlorococcus as the major clade (34–44%), but were low in Arctic and Polar waters (1% and 5%, respectively). In contrast, Bacteroidetes accounted for the majority of HNA cells in the Polar and Arctic province (26% and 32%, respectively), but were low in the Gyre region (3–10%). The DNA content of the HNA population was about 3.5 times higher than that of the LNA populations. This reflects differences in the genome sizes of closely related cultured representatives of HNA clades (3–6 Mbp) and LNA clades (1.3–1.5 Mbp).  相似文献   

4.
We used flow cytometry to examine seasonal variations in basin-scale distributions of bacterioplankton in Lake Biwa, Japan, a large mesotrophic freshwater lake with an oxygenated hypolimnion. The bacterial communities were divided into three subgroups: bacteria with very high nucleic acid contents (VHNA bacteria), bacteria with high nucleic acid contents (HNA bacteria), and bacteria with low nucleic acid contents (LNA bacteria). During the thermal stratification period, the relative abundance of VHNA bacteria (%VHNA) increased with depth, while the reverse trend was evident for LNA bacteria. Seasonally, the %VHNA was strongly positively correlated (r = 0.87; P < 0.001) with the concentration of dissolved inorganic phosphorus, but not with the concentration of chlorophyll a. The growth of VHNA bacteria was significantly enhanced by addition of phosphate or phosphate plus glucose but not by addition of glucose alone. Although the growth of VHNA and HNA bacteria generally exceeded that of LNA bacteria, our data also revealed that LNA bacteria grew faster than and were grazed as fast as VHNA bacteria in late August, when nutrient limitation was presumably severe. Based on these results, we hypothesize that in severely P-limited environments such as Lake Biwa, P limitation exerts more severe constraints on the growth of bacterial groups with higher nucleic acid contents, which allows LNA bacteria to be competitive and become an important component of the microbial loop.  相似文献   

5.
1. Abundance and bacterial production (BP) of heterotrophic bacteria (HBact) were measured in the north and south basins of Lake Tanganyika, East Africa, during seasonal sampling series between 2002 and 2007. The major objective of the study was to assess whether BP can supplement phytoplankton particulate primary production (particulate PP) in the pelagic waters, and whether BP and particulate PP are related in this large lake. HBact were enumerated in the 0–100 m surface layer by epifluorescence microscopy and flow cytometry; BP was quantified using 3H‐thymidine incorporation, usually in three mixolimnion layers (0–40, 40–60 and 60–100 m). 2. Flow cytometry allowed three subpopulations to be distinguished: low nucleic acid content bacteria (LNA), high nucleic acid content bacteria (HNA) and Synechococcus‐like picocyanobacteria (PCya). The proportion of HNA was on average 67% of total bacterial abundance, and tended to increase with depth. HBact abundance was between 1.2 × 105 and 4.8 × 106 cells mL−1, and was maximal in the 0–40 m layer (i.e. roughly, the euphotic layer). Using a single conversion factor of 15 fg C cell−1, estimated from biovolume measurements, average HBact biomass (integrated over a 100‐m water column depth) was 1.89 ± 1.05 g C m−2. 3. Significant differences in BP appeared between seasons, especially in the south basin. The range of BP integrated over the 0–100 m layer was 93–735 mg C m−2 day−1, and overlapped with the range of particulate PP (150–1687 mg C m−2 day−1) measured in the same period of time at the same sites. 4. Depth‐integrated BP was significantly correlated to particulate PP and chlorophyll‐a, and BP in the euphotic layer was on average 25% of PP. 5. These results suggest that HBact contribute substantially to the particulate organic carbon available to consumers in Lake Tanganyika, and that BP may be sustained by phytoplankton‐derived organic carbon in the pelagic waters.  相似文献   

6.
In order to assess the factors that determine the dynamics of bacteria with high nucleic acid content in aquatic systems, we (i) conducted 24-h in situ dialysis experiments, involving different fractions of plankton and unfiltered water and (ii) examined empirical relationships between bacteria and both abiotic factors and protists, in boreal humic freshwaters (reservoir and lakes) in the James Bay region (Québec, Canada). Bacteria were subdivided into two subgroups on the basis of their nucleic acid content assessed by flow cytometry. The abundance of bacteria with the highest nucleic acid content and high light scatter (HNA-hs) was significantly correlated, across sites, to bacterial production, whereas bacteria with lower nucleic acid content (LNA) and total bacteria were not. In addition, HNA-hs growth was higher and more variable than LNA growth, indicating that HNA-hs were the most dynamic bacteria. Heterotrophic nanoflagellate and ciliate biomass represented, on average, 5 and 13% of bacterial biomass, respectively. Both in ambient waters and in experiments, ciliates were significantly and negatively correlated with bacteria, whereas heterotrophic nanoflagellates, likely under the grazing pressure from ciliates and metazooplankton, were not. Among ciliates, Cyclidium glaucoma appeared to play an important role. Its growth was significantly and negatively correlated to that of HNA-hs but not to that of LNA. In ambient waters, the abundance of this species explained 56% of the variations in HNA-hs abundance and only 27% of those for LNA. The abundances of total bacteria and LNA significantly increased with chlorophyll a, whereas those of HNA-hs did not. In addition, during the experiments, the estimated potential losses of HNA-hs significantly increased with the initial abundance of C. glaucoma. These results suggest selective removal of the most dynamic bacteria by C. glaucoma and indicate that ciliates may play an important role in the dynamics of active bacteria in natural waters. These findings suggest the existence, within the aquatic microbial food webs, of keystone species that are very important in regulating the activity structure of bacteria.  相似文献   

7.
Planktonic bacteria can be grouped into ‘high nucleic acid content (HNA) bacteria’ and ‘low nucleic acid content (LNA) bacteria.’ Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode. The pulse-treated LNA bacteria exhibited twice the cell abundance and four times the viability of the continuous-treated LNA, while HNA did not show an adaptation to pulsed treatment. In structural equation modelling, LNA bacteria had higher path coefficients than HNA, between growth and carbon-saving metabolic pathways, intracellular ATP and the inorganic energy storage polymer, polyphosphate, indicating their low-cost growth, and flexible energy storage and utilisation. After incubation, the pulse-treated LNA bacteria contained more proteins and polysaccharides (0.00064, 0.0012 ng cell−1) than the continuous-treated LNA (0.00014, 0.00014 ng cell−1), conferring endurance and rapid response to pulses. Compared to LNA, HNA keystone taxa had stronger correlations with the primary glucose metabolism step, glycolysis, and occupied leading positions to explain the random forest model. They are essential to introduce glucose into the element cycling of the whole community under both treatments. Our work outlines a systematic bacterial response to carbon input.  相似文献   

8.
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.  相似文献   

9.
The ecological significance of the marine bacterial populations distinguishable by flow cytometry on the basis of the fluorescence (FL) of their nucleic acid (NA) content and proxies of cell size (such as side scatter, SSC) remains largely unknown. Some studies have suggested that cells with high NA (HNA) content and high SSC (HS) represent the active members of the community, while the low NA (LNA) cells are inactive members of the same phylogenetic groups. But group-specific activity measurements and phylogenetic assignment after cell sorting have suggested this is not be the case, particularly in open-ocean communities. To test the extent to which the different NA subgroups are similar, and consequently the extent to which they likely have similar ecological and biogeochemical roles in the environment, we analysed the phylogenetic composition of three populations after cell sorting [high NA-high SC (HNA-HS), high NA-low SC (HNA-LS), low NA (LNA)] by 454 pyrosequencing in two contrasting periods of the year in NW Mediterranean coastal waters (BBMO, Blanes Bay Microbial Observatory) where these three populations have recurrent seasonal patterns. Statistical analyses showed that summer and winter samples were significantly different and, importantly, the sorted populations within a sample were composed of different taxa. The majority of taxa were associated with one NA fraction only, and the degree of overlap (i.e. OTUs present simultaneously in 2 fractions) between HNA and LNA and between summer and winter communities was very small. Rhodobacterales, SAR116 and Bacteroidetes contributed primarily to the HNA fraction, whereas other groups such as SAR11 and SAR86 contributed largely to the LNA fractions. Gammaproteobacteria other than SAR86 showed less preference for one particular NA fraction. An increase in diversity was observed from the LNA to the HNA-HS fraction for both sample dates. Our results suggest that, in Blanes Bay, flow cytometric signatures of natural communities track their phylogenetic composition.  相似文献   

10.
Here, we combined flow cytometry (FCM) and phylogenetic analyses after cell sorting to characterize the dominant groups of the prokaryotic assemblages inhabiting two ponds of increasing salinity: a crystallizer pond (TS) with a salinity of 390 g/L, and the non-crystallizer pond (M1) with a salinity of 200 g/L retrieved from the solar saltern of Sfax in Tunisia. As expected, FCM analysis enabled the resolution of high nucleic acid content (HNA) and low nucleic acid content (LNA) prokaryotes. Next, we performed a taxonomic analysis of the bacterial and archaeal communities comprising the two most populated clusters by phylogenetic analyses of 16S rRNA gene clone library. We show for the first time that the presence of HNA and LNA content cells could also be extended to the archaeal populations. Archaea were detected in all M1 and TS samples, whereas representatives of Bacteria were detected only in LNA for M1 and HNA for TS. Although most of the archaeal sequences remained undetermined, other clones were most frequently affiliated to Haloquadratum and Halorubrum. In contrast, most bacterial clones belonged to the Alphaproteobacteria class (Phyllobacterium genus) in M1 samples and to the Bacteroidetes phylum (Sphingobacteria and Salinibacter genus) in TS samples.  相似文献   

11.
We used flow cytometry to examine seasonal variations in basin-scale distributions of bacterioplankton in Lake Biwa, Japan, a large mesotrophic freshwater lake with an oxygenated hypolimnion. The bacterial communities were divided into three subgroups: bacteria with very high nucleic acid contents (VHNA bacteria), bacteria with high nucleic acid contents (HNA bacteria), and bacteria with low nucleic acid contents (LNA bacteria). During the thermal stratification period, the relative abundance of VHNA bacteria (%VHNA) increased with depth, while the reverse trend was evident for LNA bacteria. Seasonally, the %VHNA was strongly positively correlated (r = 0.87; P < 0.001) with the concentration of dissolved inorganic phosphorus, but not with the concentration of chlorophyll a. The growth of VHNA bacteria was significantly enhanced by addition of phosphate or phosphate plus glucose but not by addition of glucose alone. Although the growth of VHNA and HNA bacteria generally exceeded that of LNA bacteria, our data also revealed that LNA bacteria grew faster than and were grazed as fast as VHNA bacteria in late August, when nutrient limitation was presumably severe. Based on these results, we hypothesize that in severely P-limited environments such as Lake Biwa, P limitation exerts more severe constraints on the growth of bacterial groups with higher nucleic acid contents, which allows LNA bacteria to be competitive and become an important component of the microbial loop.  相似文献   

12.
深圳近海表层浮游细菌分布特征及其环境影响因素   总被引:1,自引:0,他引:1  
于2015年3月、5月、8月和10月在深圳市近岸海域(珠江口、深圳湾和大亚湾)采集表层水样,利用流式细胞仪测定总浮游细菌、高DNA含量亚群细菌(HNA)、低DNA含量亚群细菌(LNA)的丰度,分析它们的时空分布特点,阐释环境因子对浮游细菌时空分布格局的影响。结果表明,珠江口、深圳湾和大亚湾海域表层浮游细菌的平均丰度依次降低,分别为3.82×10~6个/mL、7.67×10~6个/mL和3.38×10~6个/mL。珠江口海域浮游细菌丰度由远岸到近岸递增,深圳湾海域湾内各站位浮游细菌丰度差异较小,大亚湾海域浮游细菌丰度空间差异不显著(P0.05)。浮游细菌丰度时间差异主要受温度影响,空间差异主要受营养盐和叶绿素a影响。HNA亚群丰度时空差异性比LNA亚群的大,HNA亚群受温度影响显著(P0.01),而LNA亚群与温度相关性不显著(P0.05)。环境对HNA和LNA亚群丰度的影响有许多相似之处,但两者对某些环境因子有着不同的响应,说明它们在近海表层生态系统中可能扮演着部分重叠但略有不同的角色。  相似文献   

13.
Flow cytometry has revealed the existence of two distinct fractions of bacterioplankton cells, characterized by high and low nucleic acid contents (HNA and LNA cells). Although these fractions seem ubiquitous in aquatic systems, little is known concerning the variation in the cytometric parameters used to characterize them. We have performed cytometric analyses of samples from a wide range of aquatic systems to determine the magnitude and variability in the cytometric characteristics of HNA/LNA. We show that neither group is associated to a fixed level of fluorescence and of light scatter. Rather, the relative position of HNA and LNA in the fluorescence versus side scatter cytograms varies greatly, both within and among ecosystems. Although the cytometric parameters of both groups tend to covary, there is often uncoupling between the two, particularly in light scatter. Our results show that, although the basic HNA/LNA configuration is present in most samples, its cytometric expression changes greatly in different ecosystems and along productivity gradients. The patterns in cytometric parameters do not support the simple, dichotomous view of HNA and LNA as active and inactive cells, or the notion of two distinct and independent communities, but rather suggest that there may be cells that are intrinsic to each fraction, as well as others that may exchange between fractions.  相似文献   

14.
The study comprises a data set of CTD, optical properties—K 0(PAR), c p, a(PAR), b(PAR)—and optical constituents—Chl a, SPM, CDOM—from 72 shelf and off-shelf stations in the Faroe Islands (62°N, 7°W) North East Atlantic, in early spring 2005. Results showed that shelf waters surrounding the islands were cold and low saline, whereas off-shelf waters were warmer (~1°C) and more saline (~0.05) PSU. A pronounced oceanographic front separated the two waters, and diffuse light attenuation K 0(PAR), beam attenuation c p, Chl a, absorption a(PAR), and scattering coefficient b(PAR) were all significantly higher on the shelf. Analyses showed that off-shelf light attenuation K 0(PAR) was governed by Chl a, shown by a high (r 2 = 0.64) Chl aK 0(PAR) correlation, whereas light attenuation on the shelf was governed by both Chl a, SPM, and CDOM in combination. A Chl a specific diffuse attenuation coefficient K0* ( \textPAR ) K_{0}^{*} \left( {\text{PAR}} \right) of 0.056 (m2 mg−1 Chl a) and a Chl a specific beam attenuation ( c\textp* c_{\text{p}}^{*} ) of 0.27 (m2 mg−1 Chl a) coefficients were derived for the off-shelf. It is pointed out that Chl a is the single variable that changes over time as no rivers with high SPM and CDOM enter the shelf area. Data were obtained in early spring, and Chl a concentrations were low ~0.5 mg Chl a m−3. Spring bloom Chl a are about 10 mg Chl a m−3 and estimations showed that shelf K 0(PAR) will increase about 5 times and beam attenuation about 10 times. The Faroe Islands shelf–off-shelf waters is a clear example where physical conditions maintain some clear differences in optical properties and optical constituents. The complete data set is enclosed.  相似文献   

15.
Spatial variations of bacterio- and phytoplankton were studied in order to compare their relationship in open-sea and coastal areas. Sampling was done quasi-synoptically south of the Antarctic Convergence in the Lazarev Sea and in the eastern part of the Weddell Sea during austral mid-summer. Thymidine incorporation rate was on average 1.10 nmol/m3 per hour in the open sea and 4.04  nmol/m3 per hour in the coastal area, bacterial abundance was 4.44 × 1011 and 6.11 × 1011 cells/m3 and chlorophyll a (chl a) was 0.43 and 2.42 mg/m3, respectively. Thymidine incorporation rate and chl a correlated positively in both the open-sea and coastal samples. In the coastal area bacterial numbers also correlated positively with chl a. The scale of spatial resolution was not important for detecting empirical relationships between phytoplankton and bacterioplankton parameters. In the coastal area, the low bacterial biomass in relation to chl a concentration compared to other oceans, indicates that generalised relationships between these parameters are not valid in Antarctic coastal waters. Grazing could not explain the discrepancy. The results suggest a strong coupling between phytoplankton and bacterioplankton. In addition, the results suggest that the bacterial assemblage in the coastal area was psychrophilic and well adapted to the prevailing low temperatures. Received: 18 October 1996 / Accepted: 8 December 1996  相似文献   

16.
The abundances and chlorophyll aconcentrations (Chl a) of ultraphytoplankton (<5 m) were determined at four ice-covered sites in northern seas, i.e. southeastern Hudson Bay, Saroma-ko Lagoon, Resolute Passage and the Northeast Water Polynya. Numbers of total ultraphytoplankton were low, ranging from 3.6 x 107 to 9.7 x 109 cells m-3, which confirms the overall paucity of ultra-phytoplankton in cold waters. Concentrations of <5 m Chl a varied between 0.002 and 10.8 mg m-3, which accounted for 0.2-99.7% of total Chla. Chlorophyll a concentrations of ultraphytoplankton can thus reach high values and make up a substantial fraction of total Chl a. Ultraphytoplankton were ubiquitous, but they showed high among- and within-site variability in abundance, biomass and contribution to total Chla concentrations. The ultraphytoplankton comprised primarily eukaryotes and prokaryotic phycoerythrin-rich cyanobacteria, but also some cryptomonads and phycocyanin-rich cyanobacteria. Concentrations of ultraplanktonic eukaryotes reached 7.8 x 109 cells m-3, but were generally <5 x 109 cells m-3, whereas the maximum concentration of prokaryotes was 6.2 x 109 cells m-3. The concentrations of eukaryotes and prokaryotes were related, overall, to water mass characteristics, i.e. temperature, salinity, percent irradiance, and concentrations of nitrate and ammonium. Depending on sites, the abundances of eukaryotes were positively liked to salinity, percent irradiance, nitrate and ammonium, whereas the abundances of prokaryotes were positively correlated with ammonium and nitrate. Phycocyanin-rich cyanobacteria were generally confined to brackish waters (Hudson Bay). The highest cell numbers of ultraphytoplankton were found at temperatures of <0.5C and salinities of >30 p.s.u.   相似文献   

17.
Viruses play a key role in all marine ecosystems, and yet little is known of their distribution in Antarctic waters, especially in bathypelagic waters (>1000 m). In this study, the abundance and distribution of viruses and their potential hosts from the surface to the bottom of Prydz Bay, Antarctic, was investigated using flow cytometry. Viruses and autotrophs were abundant in nearshore and continental shelf waters, while heterotrophic bacteria and picoeukaryotes were abundant in offshore waters. Virus and bacteria abundances generally decreased with increasing depth but increased slightly just above the seafloor. Within the water column, maximum virus numbers coincided with the maximum values of chlorophyll a (when greater than 0.1 μg l?1), in the surface and subsurface (25 m). In the open ocean, however, virus abundance usually correlated with bacterial abundance at greater depths (50, 300 and 500 m) where the surface chlorophyll a concentration was lower than 0.1 μg l?1. Viral abundance was correlated with the host cell abundance, and this was different in different pelagic zones (bacteria and autotrophs (i.e., chlorophyll a concentration) in the epipelagic waters, picoeukaryotes and bacteria in mesopelagic waters and bacteria in bathypelagic waters). Principle component analysis and Pearson correlation analysis indicated that there was a close relationship between virus abundance and chlorophyll a, bacteria and nutrients (NO2 + NO3, phosphate and silicate), and picoeukaryote abundance was mainly correlated with water depth and salinity.  相似文献   

18.
Specific inherent optical properties (SIOP) of the Berau coastal waters were derived from in situ measurements and inversion of an ocean color model. Field measurements of water-leaving reflectance, total suspended matter (TSM), and chlorophyll a (Chl a) concentrations were carried out during the 2007 dry season. The highest values for SIOP were found in the turbid waters, decreasing in value when moving toward offshore waters. The specific backscattering coefficient of TSM varied by an order of magnitude and ranged from 0.003 m2 g−1, for clear open ocean waters, to 0.020 m2 g−1, for turbid waters. On the other hand, the specific absorption coefficient of Chl a was relatively constant over the whole study area and ranged from 0.022 m2 mg−1, for the turbid shallow estuary waters, to 0.027 m2 mg−1, for deeper shelf edge ocean waters. The spectral slope of colored dissolved organic matter light absorption was also derived with values ranging from 0.015 to 0.011 nm−1. These original derived values of SIOP in the Berau estuary form a corner stone for future estimation of TSM and Chl a concentration from remote sensing data in tropical equatorial waters.  相似文献   

19.
1. Chlorophyll a (Chl a) distribution across a 0.36 km2 restored floodplain (Cosumnes River, California) was analysed throughout the winter and spring flood season from January to June 2005. In addition, high temporal‐resolution Chl a measurements were made in situ with field fluorometers in the floodplain and adjacent channel. 2. The primary objectives were to characterise suspended algal biomass distribution across the floodplain at various degrees of connection with the channel and to correlate Chl a concentration and distribution with physical and chemical gradients across the floodplain. 3. Our analysis indicates that periodic connection and disconnection of the floodplain with the channel is vital to the functioning of the floodplain as a source of concentrated suspended algal biomass for downstream aquatic ecosystems. 4. Peak Chl a levels on the floodplain occurred during disconnection, reaching levels as high as 25 μg L?1. Chl a distribution across the floodplain was controlled by residence time and local physical/biological conditions, the latter of which were primarily a function of water depth. 5. During connection, the primary pond on the floodplain exhibited low Chl a (mean = 3.4 μg L?1) and the shallow littoral zones had elevated concentrations (mean = 4.6 μg L?1); during disconnection, shallow zone Chl a increased (mean = 12.4 μg L?1), but the pond experienced the greatest algal growth (mean = 14.7 μg L?1). 6. Storm‐induced floodwaters entering the floodplain not only displaced antecedent floodplain waters, but also redistributed floodplain resources, creating complex mixing dynamics between parcels of water with distinct chemistries. Incomplete replacement of antecedent floodplain waters led to localised hypoxia in non‐flushed areas. 7. The degree of complexity revealed in this analysis makes clear the need for high‐resolution spatial and temporal studies such as this to begin to understand the functioning of dynamic and heterogeneous floodplain ecosystems.  相似文献   

20.
Egg production of a brackish water calanoid copepod Acartia bifilosa was measured in the laboratory in different chlorophyll (Chl) a concentrations (0-24 mgr; l-1) and temperatures 4-24C), and the cephalothorax length and carbon content of females were determined. Egg production was positively correlated both with Chl a concentration and with temperature; highest egg production was obtained with 14-20 g Chl a l-1 and at 13-18°C. There was also a significant positive correlation between egg production and female length-specific carbon content (g C m-1). However, no correlation was observed between egg production and cephalothorax length of females. Female carbon content changed during the 3 day experiments; carbon content was positively related to Chl a concentration and negatively related to temperature. We conclude that food availability (Chl a concentration), rather than temperature, limits the egg production of A.bifilosa in the present study area in the northern Baltic Sea. Further, both food concentration and temperature affect egg production not only through the direct effect on the numbers of eggs produced per female, but also through their effect on female carbon content.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号