首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The genomic sequence of Pseudomonas aeruginosa PAO1 was searched for the presence of open reading frames (ORFs) encoding enzymes potentially involved in the formation of Gln-tRNA and of Asn-tRNA. We found ORFs similar to known glutamyl-tRNA synthetases (GluRS), glutaminyl-tRNA synthetases (GlnRS), aspartyl-tRNA synthetases (AspRS), and trimeric tRNA-dependent amidotransferases (AdT) but none similar to known asparaginyl-tRNA synthetases (AsnRS). The absence of AsnRS was confirmed by biochemical tests with crude and fractionated extracts of P. aeruginosa PAO1, with the homologous tRNA as the substrate. The characterization of GluRS, AspRS, and AdT overproduced from their cloned genes in P. aeruginosa and purified to homogeneity revealed that GluRS is discriminating in the sense that it does not glutamylate tRNAGln, that AspRS is nondiscriminating, and that its Asp-tRNAAsn product is transamidated by AdT. On the other hand, tRNAGln is directly glutaminylated by GlnRS. These results show that P. aeruginosa PAO1 is the first organism known to synthesize Asn-tRNA via the indirect pathway and to synthesize Gln-tRNA via the direct pathway. The essential role of AdT in the formation of Asn-tRNA in P. aeruginosa and the absence of a similar activity in the cytoplasm of eukaryotic cells identifies AdT as a potential target for antibiotics to be designed against this human pathogen. Such novel antibiotics could be active against other multidrug-resistant gram-negative pathogens such as Burkholderia and Neisseria as well as all pathogenic gram-positive bacteria.  相似文献   

2.
The genes coding for the lactose permease and beta-galactosidase, two proteins involved in the metabolism of lactose by Lactobacillus bulgaricus, have been cloned, expressed, and found functional in Escherichia coli. The nucleotide sequences of these genes and their flanking regions have been determined, showing the presence of two contiguous open reading frames (ORFs). One of these ORFs codes for the lactose permease gene, and the other codes for the beta-galactosidase gene. The lactose permease gene is located in front of the beta-galactosidase gene, with 3 bp in the intergenic region. The two genes are probably transcribed as one operon. Primer extension studies have mapped a promoter upstream from the lactose permease gene but not the beta-galactosidase gene. This promoter is similar to those found in E. coli with general characteristics of GC-rich organisms. In addition, the sequences around the promoter contain a significantly higher number of AT base pairs (80%) than does the overall L. bulgaricus genome, which is rich in GC (GC content of 54%). The amino acid sequences obtained from translation of the ORFs are found to be highly homologous (similarity of 75%) to those from Streptococcus thermophilus. The first 460 amino acids of the lactose permease shows homology to the melibiose transport protein of E. coli. Little homology was found between the lactose permease of L. bulgaricus and E. coli, but the residues which are involved in the binding and the transport of lactose are conserved. The carboxy terminus is similar to that of the enzyme III of several phosphoenolpyruvate-dependent phosphotransferase systems.  相似文献   

3.
4.
A 3.3-kb BamHI fragment of Lactobacillus delbrueckii subsp. bulgaricus DNA was cloned and sequenced. It complements an Escherichia coli glnA deletion strain and hybridizes strongly to a DNA containing the Bacillus subtilis glnA gene. DNA sequence analysis of the L. delbrueckii subsp. bulgaricus DNA showed it to contain the glnA gene encoding class I glutamine synthetase, as judged by extensive homology with other prokaryotic glnA genes. The sequence suggests that the enzyme encoded in this gene is not controlled by adenylylation. Based on a comparison of glutamine synthetase sequences, L. delbrueckii subsp. bulgaricus is much closer to gram-positive eubacteria, especially Clostridium acetobutylicum, than to gram-negative eubacteria and archaebacteria. The fragment contains another open reading frame encoding a protein of unknown function consisting of 306 amino acids (ORF306), which is also present upstream of glnA of Bacillus cereus. In B. cereus, a repressor gene, glnR, is found between the open reading frame and glnA. Two proteins encoded by the L. delbrueckii subsp. bulgaricus gene were identified by the maxicell method; the sizes of these proteins are consistent with those of the open reading frames of ORF306 and glnA. The lack of a glnR gene in the L. delbrueckii subsp. bulgaricus DNA in this position may indicate a gene rearrangement or a different mechanism of glnA gene expression.  相似文献   

5.
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.  相似文献   

6.
The essential 4.5S RNA gene of Escherichia coli can be complemented by 4.5S RNA-like genes from three other eubacteria, including both gram-positive and gram-negative organisms. Two of the genes encode RNAs similar in size to the E. coli species; the third, from Bacillus subtilis, specifies an RNA more than twice as large. The heterologous genes are expressed efficiently in E. coli, and the product RNAs resemble those produced by cognate cells. We conclude that the heterologous RNAs can replace E. coli 4.5S RNA and that the essential function of 4.5S RNA is evolutionarily conserved. A consensus structure is presented for the functionally related 4.5S RNA homologs.  相似文献   

7.
The mevalonate-independent biosynthetic pathway to isopentenyl diphosphate and dimethylallyl diphosphate, the universal precursors to the isoprenoids, operates in eubacteria, including Escherichia coli, in algae, and in the plastids of higher plants. A search of the Sanger Centre Streptomyces coelicolor genome database revealed open reading frames with ca. 40--50% identity at the deduced amino acid level to the first three E. coli enzymes of this pathway, corresponding to deoxyxylulose phosphate synthase, deoxyxylulose phosphate reductoisomerase and 2-C-methyl erythritol 4-phosphate cytidylyltransferase. The S. coelicolor genes have been cloned and expressed in E. coli, and the recombinant proteins characterized physically and kinetically. The presence of the corresponding enzyme activities in extracts of S. coelicolor CH999 further supports the operation of the mevalonate-independent pathway in this organism.  相似文献   

8.
Isopentenyl diphosphate (IPP), an important precursor of isoprenoid biosynthesis in prokaryotic and eukaryotic organisms, has been shown to activate Vgamma9/Vdelta2 T cells, the major subset of human gammadelta T cells. The biosynthesis of IPP has been first described as the acetate/mevalonate pathway. Recently, 1-deoxy-D-xylulose 5-phosphate (DOXP) and 2-C-methyl-D-erythritol 4-phosphate have been shown to be key metabolites in the DOXP pathway also leading to the formation of IPP in some eubacteria such as Escherichia coli. Here we report that the low molecular mass fraction of extracts from bacteria using the DOXP pathway induces Vgamma9/Vdelta2 T cell activation, while analogous preparations from bacteria using the classical mevalonate pathway fail to do so. Addition of 1-deoxy-D-xylulose potentiates the ability of E. coli extracts to activate Vgamma9/Vdelta2 T cells. As the amounts of IPP present in the bacterial preparations are not sufficient to induce significant Vgamma9/Vdelta2 T cell activation, our data suggest that compounds other than IPP associated with the DOXP pathway are responsible for Vgamma9/Vdelta2 T cell activation.  相似文献   

9.
10.
Ribosomes and postribiosomal supernatant fluid (S-100) were isolated from Coxiella burnetii. The ribosomes functioned in polyuridylic acid-directed polyphenylalanine synthesis in the presence of S-100 from either C. burnetii or Escherichia coli. C. burnetii S-100 promoted translation with E. coli ribosomes. Antisera against E. coli elongation factor G and ribosomal proteins L7/L12 cross-reacted with rickettsial S-100 and ribosomes, respectively. Ribosomal proteins were analyzed by two-dimensional gel electrophoresis.  相似文献   

11.
The Lactobacillus bulgaricus beta-galactosidase gene was cloned on a ca. 7-kilobase-pair HindIII fragment in the vector pKK223-3 and expressed in Escherichia coli by using its own promoter. The nucleotide sequence of the gene and approximately 400 bases of 3'- and 5'-flanking sequences was determined. The amino acid sequence of the beta-galactosidase, deduced from the nucleotide sequence of the gene, yielded a monomeric molecular mass of ca. 114 kilodaltons, slightly smaller than the E. coli lacZ and Klebsiella pneumoniae lacZ enzymes but larger than the E. coli evolved (ebgA) beta-galactosidase. The cloned beta-galactosidase was found to be indistinguishable from the native enzyme by several criteria. From amino acid sequence alignments, the L. bulgaricus beta-galactosidase has a 30 to 34% similarity to the E. coli lacZ, E. coli ebgA, and K. pneumoniae lacZ enzymes. There are seven regions of high similarity common to all four of these beta-galactosidases. Also, the putative active-site residues (Glu-461 and Tyr-503 in the E. coli lacZ beta-galactosidase) are conserved in the L. bulgaricus enzyme as well as in the other two beta-galactosidases mentioned above. The conservation of active-site amino acids and the large regions of similarity suggest that all four of these beta-galactosidases evolved from a common ancestral gene. However, these enzymes are quite different from the thermophilic beta-galactosidase encoded by the Bacillus stearothermophilus bgaB gene.  相似文献   

12.
We report the crystal structure of an enolase from Enterococcus hirae, which is the first report of a structure determination among gram-positive bacteria. We isolated the enolase gene and determined the base sequence. The amino acid sequence deduced from the DNA sequence suggests that this enolase is composed of 431 amino acids. The amino acid sequence is very similar to those of enolases from eukaryotic and prokaryotic organisms, being 65% and 50% identical to enolases from Escherichia coli and yeast, respectively. The enolase prepared from E. hirae lysate yielded crystals containing one dimer per asymmetric unit. X-ray diffraction patterns were obtained at 2.8 A resolution on a SPring-8 synchrotron radiation source. Crystals belong to space group I4 with unit cell dimensions of a = b = 153.5 A, c = 90.7 A. The E. hirae, yeast, E. coli and lobster enolase structures are very similar. The E. hirae enolase takes an "Open" conformation. The regions in the structure that differ most from other enolases are loops L4 (132-140) and L3 (244-265). Considering the positions of these loops relative to the active site, they seem to have no direct involvement in function. Our findings show that the three dimensional structure of an important enzyme in the glycolytic pathway is evolutionarily conserved among eukaryotes and prokaryotes, including gram-positive bacteria.  相似文献   

13.
The cDNA for human cytosolic asparaginyl-tRNA synthetase (hsAsnRSc) has been cloned and sequenced. The 1874 bp cDNA contains an open reading frame encoding 548 amino acids with a predicted M r of 62 938. The protein sequence has 58 and 53% identity with the homologous enzymes from Brugia malayi and Saccharomyces cerevisiae respectively. The human enzyme was expressed in Escherichia coli as a fusion protein with an N-terminal 4 kDa calmodulin-binding peptide. A bacterial extract containing the fusion protein catalyzed the aminoacylation reaction of S.cerevisiae tRNA with [14C]asparagine at a 20-fold efficiency level above the control value confirming that this cDNA encodes a human AsnRS. The affinity chromatography purified fusion protein efficiently aminoacylated unfractionated calf liver and yeast tRNA but not E.coli tRNA, suggesting that the recombinant protein is the cytosolic AsnRS. Several human anti-synthetase sera were tested for their ability to neutralize hsAsnRSc activity. A human autoimmune serum (anti-KS) neutralized hsAsnRSc activity and this reaction was confirmed by western blot analysis. The human asparaginyl-tRNA synthetase appears to be like the alanyl- and histidyl-tRNA synthetases another example of a human Class II aminoacyl-tRNA synthetase involved in autoimmune reactions.  相似文献   

14.
目的:从大肠埃希氏杆菌UTI89基因组中筛选出全部潜在的分泌蛋白并进行初步研究。方法:使用SignalP3.0、TatP1.0、 SecretomeP2.0等蛋白分析软件对5211个ORF进行预测;对筛选出的信号肽及分泌蛋白的基本特征进行统计学分析;使用Blast 2 Sequences进行同源性分析。结果:共筛选出432个sec途径分泌蛋白,19个Tat途径分泌蛋白,386个非经典分泌蛋白;信号肽、分泌蛋白平均长度分别为25.5aa、282.8aa;信号肽中出现频率最高的3种氨基酸依次为L、A、S;仅有两个信号肽的氨基酸序列完全相同,相应的分泌蛋白高度同源。结论:大肠埃希氏杆菌UTI89基因组中有837个ORF可能编码分泌蛋白;分泌蛋白集中在500aa以下;组成信号肽的氨基酸相对保守,多数为疏水氨基酸;信号肽变异性较大,含相同信号肽的蛋白可能由同源基因编码。  相似文献   

15.
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

16.
Hydrolysis of lactose by immobilized microorganisms.   总被引:1,自引:0,他引:1  
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

17.
Leptospira biflexa is a representative of an evolutionarily distinct group of eubacteria. In order to better understand the genetic organization and gene regulatory mechanisms of this species, we have chosen to study the genes required for tryptophan biosynthesis in this bacterium. The nucleotide sequence of the region of the L. biflexa serovar patoc chromosome encoding the trpE and trpG genes has been determined. Four open reading frames (ORFs) were identified in this region, but only three ORFs were translated into proteins when the cloned genes were introduced into Escherichia coli. Analysis of the predicted amino acid sequences of the proteins encoded by the ORFs allowed us to identify the trpE and trpG genes of L. biflexa. Enzyme assays confirmed the identity of these two ORFs. Anthranilate synthase from L. biflexa was found to be subject to feedback inhibition by tryptophan. Codon usage analysis showed that there was a bias in L. biflexa towards the use of codons rich in A and T, as would be expected from its G + C content of 37%. Comparison of the amino acid sequences of the trpE gene product and the trpG gene product with corresponding gene products from other bacteria showed regions of highly conserved sequence.  相似文献   

18.
In this paper we describe the isolation of a second gene in the newly identified pyridoxine biosynthesis pathway of archaebacteria, some eubacteria, fungi, and plants. Although pyridoxine biosynthesis has been thoroughly examined in Escherichia coli, recent characterization of the Cercospora nicotianae biosynthesis gene PDX1 led to the discovery that most organisms contain a pyridoxine synthesis gene not found in E. coli. PDX2 was isolated by a degenerate primer strategy based on conserved sequences of a gene specific to PDX1-containing organisms. The role of PDX2 in pyridoxine biosynthesis was confirmed by complementation of two C. nicotianae pyridoxine auxotrophs not mutant in PDX1. Also, targeted gene replacement of PDX2 in C. nicotianae results in pyridoxine auxotrophy. Comparable to PDX1, PDX2 homologues are not found in any of the organisms with homologues to the E. coli pyridoxine genes, but are found in the same archaebacteria, eubacteria, fungi, and plants that contain PDX1 homologues. PDX2 proteins are less well conserved than their PDX1 counterparts but contain several protein motifs that are conserved throughout all PDX2 proteins.  相似文献   

19.
20.
H Zheng  E Liu  P Hao  T Konno  M Oda  ZS Ji 《Biotechnology letters》2012,34(8):1545-1551
The amino acid biosynthesis pathway and proteolytic system of Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038), a mainstay of large-scale yogurt production, were modeled based on its genomic sequence. L. bulgaricus 2038 retains more potential for amino acid synthesis and a more powerful proteolytic system than other L. bulgaricus strains, but favors amino acid uptake over de novo synthesis. Free amino acids and peptides in bovine milk provide the main nitrogen sources; whey is more important than casein for L. bulgaricus during fermentation. Free amino acids are imported by amino acid permeases and by ABC-type transport systems whereas exogenous oligopeptides are imported by ABC-type proteins only. Histidine is neither synthesized nor imported singly, which might explain why L. bulgaricus cannot grow in synthetic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号