首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetic parameters of the inhibition of pigeon brain acetylchlolinesterase (AChE) by procaine hydrochloride were investigated. Procaine (0·083–1·67 mM) reversibly inhibited AChE activity (15–83 percent) in a concentration dependent manner, the IC50 being about 0·38 mM. The Michaelis-Menten constant (Km) for the hydrolysis of acetylthiocholine iodide was found to be 1·53 × 10?4 M and the Vmax was 1·06 μmol min?1 mg?1 protein. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition is of the linear mixed type which is considered to be a mixture of partial competitive and pure non-competitive. The values of Ki(slope) and Ki (intercepts) were estimated as 0·14 mM and 0·22 mM respectively by the primary Dixon and by the secondary replots of the Lineweaver-Burk plot. The Ki′/Ki ratio shows that procaine has a greater affinity of binding for the peripheral than for the active site.  相似文献   

2.
The effects of tertiary amine local anesthetics (procaine, lidocaine, tetracaine and dibucaine) and chlorpromazine were investigated for three enzyme activities associated with rat brain synaptosomal membranes, i.e., (Na+ + K+)-ATPase (ouabain-sensitive), Mg2+-ATPase (ouabain-insensitive) and acetylcholinesterase. Approximately the same concentrations of each agent gave 50% inhibition of both ATPase, for example 7.9 and 10 mM tetracaine for Mg2+-ATPase and (Na+ + K+)-ATPase, respectively; these concentrations are 10-fold higher than required for inhibition of mitochondrial F1-ATPase. The relative inhibitory potency of the several agents was proportional to their octanol/water partition coefficients. Acetylcholinesterase was inhibited by all agents tested, but the ester anesthetics (procaine and tetracaine) were considerably more potent than the others after correction for partition coefficient differences. For tetracaine, 0.18 mM gave 50% inhibition and showed competitive inhibition on a Lineweaver-Burk plot, but for dibucaine a mixed type of inhibition was observed, and 0.63 mM was required for 50% inhibition. Tetracaine evidently binds at the active site, and dibucaine at the peripheral or modulator site, on this enzyme.  相似文献   

3.
Serotonin-sensitive aryl acylamidase in rat brain   总被引:1,自引:0,他引:1  
Aryl acylamidase (E.C.3.5.1.13) was extracted from rat brain. The enzyme activity was inhibited by low concentrations of serotonin. The inhibition was non-competitive type and Ki value was about 3 × 10?5M. Tryptamine inhibited the enzyme to a lesser extent. Other amines such as noradrenaline, tyramine and histamine did not affect the enzyme reaction. In contrast, aryl acylamidase from rat liver was insensitive to serotonin.  相似文献   

4.
Asthma is characterized by airway inflammation and airflow obstruction from human airway smooth muscle (HASM) constriction due to increased local bronchoconstrictive substances. We have recently found bitter taste receptors (TAS2Rs) on HASM, which increase [Ca2+]i and relax the muscle. We report here that some, but not all, TAS2R agonists decrease [Ca2+]i and relax HASM contracted by G-protein coupled receptors (GPCRs) that stimulate [Ca2+]i. This suggests both a second pathway by which TAS2Rs relax, and, a heterogeneity of the response phenotype. We utilized eight TAS2R agonists and five procontractile GPCR agonists in cultured HASM cells. We find that heterogeneity in the inhibitory response hinges on which procontractile GPCR is activated. For example, chloroquine inhibits [Ca2+]i increases from histamine, but failed to inhibit [Ca2+]i increases from endothelin-1. Conversely, aristolochic acid inhibited [Ca2+]i increases from endothelin-1 but not histamine. Other dichotomous responses were found when [Ca2+]i was stimulated by bradykinin, angiotensin, and acetylcholine. There was no association between [Ca2+]i inhibition and TAS2R subtype, nor whether [Ca2+]i was increased by Gq- or Gi-coupled GPCRs. Selected studies revealed a correlation between [Ca2+]i inhibition and HASM cell-membrane hyperpolarization. To demonstrate physiologic correlates, ferromagnetic beads were attached to HASM cells and cell stiffness measured by magnetic twisting cytometry. Consistent with the [Ca2+]i inhibition results, chloroquine abolished the cell stiffening response (contraction) evoked by histamine but not by endothelin-1, while aristolochic acid inhibited cell stiffening from endothelin-1, but not from histamine. In studies using intact human bronchi, these same differential responses were found. Those TAS2R agonists that decreased [Ca2+]i, promoted hyperpolarization, and decreased HASM stiffness, caused relaxation of human airways. Thus TAS2Rs relax HASM in two ways: a low-efficiency de novo [Ca2+]i stimulation, and, a high-efficiency inhibition of GPCR-stimulated [Ca2+]i. Furthermore, there is an interaction between TAS2Rs and some GPCRs that facilitates this [Ca2+]i inhibition limb.  相似文献   

5.
The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQamr-Cu(II)TPQsq-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O2 for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. Kd values for Cu(II)-CN and Cu(I)-CN, as well as the Ki for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN complexation of Cu(I).Abbreviations AGAO Arthrobacter globiformis amine oxidase - APAO Arthrobacter P1 amine oxidase - APT attached proton test - BPAO bovine plasma amine oxidase - CuAO quinone-copper containing amine oxidase - LTQ lysyl tyrosylquinone - MAO monoamine oxidase - PKAO porcine kidney amine oxidase - PPAO porcine plasma amine oxidase - PSAO pea seedling amine oxidase - TPQ 2,4,5-trihydroxyphenylalaninequinone - TPQamr TPQ aminoresorcinol - TPQimq TPQ iminoquinone - TPQox TPQ oxidized - TPQsq TPQ semiquinone - WT wild-typeE.M. Shepard and G.A. Juda contributed equally to this workThis revised version was published online in February 2004: Hansenula polymorpha was not italicised at the end of the Introduction, Equation 3 appeared twice, and the resolution of Scheme 3 was insufficient.An erratum to this article can be found at  相似文献   

6.
Among the various amines administered to excisedCucumis sativus cotyledons in short-term organ culture, agmatine (AGM) inhibited arginine decarboxylase (ADC) activity to around 50%, and putrescine was the most potent entity in this regard. Homoarginine (HARG) dramatically stimulated (3- to 4-fold) the enzyme activity. Both AGM inhibition and HARG stimulation of ADC were transient, the maximum response being elicited at 12 h of culture. Mixing experiments ruled out involvement of a macromolecular effector in the observed modulation of ADC. HARG-stimulated ADC activity was completely abolished by cycloheximide, whereas AGM-mediated inhibition was unaffected. Half-life of the enzyme did not alter on treatment with either HARG or AGM. The observed alterations in ADC activity are accompanied by change in Km of the enzyme. HARG-stimulated ADC activity is additive to that induced by benzyladenine (BA) whereas in presence of KCl, HARG failed to enhance ADC activity, thus demonstrating the overriding influence of K+ on amine metabolism.  相似文献   

7.
Summary Washed microsomal preparations (100 000 xg sediment) from the yeast Sporopachydermia cereana that had been grown on trimethylamine N-oxide as sole nitrogen source catalysed the NAD(P)H-dependent reduction of trimethylamine N-oxide to trimethylamine. Under anaerobic conditions, this was the sole reaction product, but under aerobic conditions only small amounts of trimethylamine accumulated, most being further metabolized to methylamine and formaldehyde (no detectable dimenthylamine accumulated due to its rapid turnover). In the absence of NAD(P)H, no formation of amines or formaldehyde from trimethylamine N-oxide was detected. The trimethylamine N-oxide reductase activity was inhibited by quinacrine, Cu2+ ions, triethylamine N-oxide (apparent K i 0.43 mM) and dimethyl sulphoxide (K i 0.94 mM). Chlorate and nitrate failed to inhibit the enzyme. The K m for trimethylamine N-oxide was 29 M. Triethylamine N-oxide was also reduced by the microsomal preparation with the formation of acetaldehyde, and this reduction was sensitive to the same inhibitors as trimethylamine N-oxide, suggesting that both amine oxides are metabolized by the same enzyme(s). It is concluded that trimethylamine N-oxide is metabolized in this yeast via an NAD(P)H-dependent reductase.Abbreviations TMAO triemthylamine N-oxide  相似文献   

8.
31P NMR has been employed to study the interaction between zinc(II) bis(O,O′-di-iso-butyldithiophosphate), Zn[S2P(OiBu)2]2, and four multidentate amines (diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine) in chloroform at 294 K. The major interaction of Zn[S2P(OiBu)2]2 and these polyamines involves displacement of the {S2P(OiBu)2} ligands from the zinc giving [Zn(amine)]2+ and [S2P(OiBu)2] ions in solution. The magnitudes of the equilibrium constants, K1 (=[{Zn(amine)}2+][{DDP}]2/[Zn(DDP)2][amine]), have been evaluated in the cases of triethylenetetramine (20.0 l mol−1), tetraethylenepentamine (19.1 l mol−1) and pentaethylenehexamine (1.58 l mol−1). Crystalline 1:1 ionic complexes have also been isolated from these systems and characterised.  相似文献   

9.
N-nitrosamine is a class of carcinogenic, mutagenic, and teratogenic compounds, which can be produced from N-nitrosation of amine by nitrosating agents. N-nitrosation of 19 amines (eight acyclic amines, five heterocyclic amines, and six amines with unsaturated groups) by N2O3 was investigated at the CBS-QB3 level of theory. The results indicate that generally the heterocyclic amines have the highest reactivities among the three kinds of amines, whereas the reactivities of the amines with unsaturated and electron-withdrawing groups are relatively low. Frontier molecular orbital analysis indicates that the energy gap between the HOMO of an amine and the LUMO of N2O3 has a close connection with the reactivity of an amine. A structure-reactivity relationship of amines in the N-nitrosation reactions by N2O3 was established using the stepwise multivariate linear regression. The results indicate that the reactivity of an amine has a definite relationship (Radj2 = 0.947) with the heterolytic bond dissociation energy of R1R2N-H bond, energy of HOMO, NBO occupancy of the natural lone pair orbital of N atom, the NBO charge of the N atom, and the pyramidalization angle of an amine. This work will be helpful to gain more insight into the N-nitrosation reactions.  相似文献   

10.
Vacuolar proton pumping pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PPi hydrolysis. A histidine-specific modifier, diethylpyrocarbonate (DEPC), could substantially inhibit enzymic activity and H+-translocation of vacuolar H+-PPase in a concentration-dependent manner. Absorbance of vacuolar H+-PPase at 240 nm was increased upon incubation with DEPC, demonstrating that an N-carbethoxyhistidine moiety was probably formed. On the other hand, hydroxylamine, a reagent that can deacylate N-carbethoxyhistidine, could reverse the absorption change at 240 nm and partially restore PPi hydrolysis activity as well. The pK a of modified residues of the enzyme was determined to be 6.4, a value close to that of histidine. Thus, we speculate that inhibition of vacuolar H+-PPase by DEPC possibly could be attributed to the modification of histidyl residues on the enzyme. Furthermore, inhibition of vacuolar H+-PPase by DEPC follows pseudo-first-order rate kinetics. A reaction order of 0.85 was calculated from a double logarithmic plot of the apparent reaction constant against DEPC concentration, suggesting that the modification of one single histidine residue on the enzyme suffices to inhibit vacuolar H+-PPase. Inhibition of vacuolar H+-PPase by DEPC changes V max but not K m values. Moreover, DEPC inhibition of vacuolar H+-PPase could be substantially protected against by its physiological substrate, Mg2+-PPi. These results indicated that DEPC specifically competes with the substrate at the active site and the DEPC-labeled histidine residue might locate in or near the catalytic domain of the enzyme. Besides, pretreatment of the enzyme with N-ethylmaleimide decreased the degree of subsequent labeling of H+-PPase by DEPC. Taken together, we suggest that vacuolar H+-PPase likely contains a substrate-protectable histidine residue contributing to the inhibition of its activity by DEPC, and this histidine residue may located in a domain sensitive to the modification of Cys-629 by NEM.  相似文献   

11.
The effect of tunicamycin (TM) on the metabolism of acetylated low-density lipoprotein (AcLDL) was examined to determine whether N-linked glycosylation is required for the proper function of the AcLDL pathway. Proteolytic degradation of [125I]-AcLDL was increased twofold in the presence of TM. This did not occur via an increase in total lysosomal enzyme activity or extracellular proteolysis; rather, the rate of uptake of [125I]-AcLDL was increased. The enhanced degradation of AcLDL did not lead to a commensurate increase in the rate of synthesis of cholesteryl oleate. Conversely, the rate of cholesterol esterification was reduced in the presence of TM. The uptake of [125I]-AcLDL was more sensitive to inhibition by chloroquine in TM-treated cells. However, the presence of TM did not affect the ability of chloroquine to inhibit constitutive recycling of AcLDL binding sites. These results suggest that N-linked glycosylation may be involved in the regulation of AcLDL metabolism in J774 cells.  相似文献   

12.
Regulation of catecholamine synthesis in rat brain synaptosomes   总被引:9,自引:9,他引:0  
Abstract— Catecholamine synthesis in synaptosomal preparations of rat striatum, cortex and brain stem was investigated. The striatum had much higher activity than either the cortex or brain stem. Equilibration of labelled tyrosine between tissue and incubation medium was completed within 2 min. The apparent Km of tyrosine hydroxylase (EC 1.14.3a) and of the overall catecholamine synthetic pathway were both approximately 5 ± 10?6m for tyrosine. The following amines were found to inhibit striatal dopamine synthesis: dopamine, 25% inhibition at 5 ± 10?7m ; noradrenaline, 25% inhibition at 5 ± 10?6m ;and serotonin, 30% inhibition at 10?5m . The catecholamine-induced inhibition of synthesis was antagonized by pre-incubation with cocaine. Increasing the potassium concentration from 5 to 55 mm caused a release of amines into the medium which was accompanied by a 40% increase in dopamine synthesis, when synthesis was measured during the first 5 min of exposure to elevated potassium. These results indicate that synaptosomal catecholamine synthesis is inhibited by increases in intra-synaptosomal amine levels, and that short-term exposure to depolarizing concentrations of potassium can increase synthesis.  相似文献   

13.
Nitrogenase from soybean bacteroids was purified and used to study NO 2 effects either as unfractionated enzyme or as reconstituted enzyme from separated nitrogenase components I and II. Partially purified enzyme was strongly inhibited by nitrite at concentrations less than 0.1 mM. This inhibition was typically referred to as competitive with an inhibition constant (K i) for NO 2 which was 5.2 mM. Kinetics studies showed an abnormally low apparent constant of association between enzyme and NO 2 (k a=60 M-1·s-1). Nitrite appeared to bind to the MoFe protein, without any effect on Fe component, giving a completely reversible inhibition. Nitrite was found not to be an alternative substrate for nitrogenase.Abbreviations TES N-tris (hydroxymethyl) methyl-2-aminoethane sulfonic acid - PPG Polypropylene glycol  相似文献   

14.
—The hydrolysis of ThTP by rat brain membrane-bound ThTPase is inhibited by nucleoside diphosphates and triphosphates. ATP and ADP are most effective, reducing hydrolysis by 50% at concentrations of 2 × 10?5m and 7·5 × 10?5m respectively. Nucleoside monophosphates and free nuclcosides as well as Pi have no effect on enzyme activity. ThMP and ThDP also fail to inhibit hydrolysis in concentrations up to 5 × 10?3m . Non-hydrolysable methylene phosphate analogs of ATP and ADP were used in further kinetic studies with the ThTPase. The mechanism of inhibition by these analogs is shown to be of mixed non-competitive nature for both compounds. An observed Ki, of 4 × 10?5m for the ATP analog adenosine-PPCP and 9 × 10?5m for the ADP analog adenosine-PCP is calculated at pH 6·5. Formation of the true enzyme substrate, the [Mg2+. ThTP] complex, is not significantly affected by concentrations of analogs producing maximal (>95%) inhibition of enzyme activity. Likewise the relationships between pH and observed Km and pH and Vmax are not shifted by the presence of similar concentrations of inhibitor.  相似文献   

15.
Bismuth compounds are widely used for the treatment of peptic ulcers and Helicobacter pylori infections. It has been suggested that enzyme inhibition plays an important role in the antibacterial activity of bismuth towards this bacterium. Urease, an enzyme that converts urea into ammonia and carbonic acid, is crucial for colonization of the acidic environment of the stomach by H. pylori. Here, we show that three bismuth complexes exhibit distinct mechanisms of urease inhibition, with some differences dependent on the source of the enzyme. Bi(EDTA) and Bi(Cys)3 are competitive inhibitors of jack bean urease with K i values of 1.74 ± 0.14 and 1.84 ± 0.15 mM, while the anti-ulcer drug, ranitidine bismuth citrate (RBC) is a non-competitive inhibitor with a K i value of 1.17 ± 0.09 mM. A 13C NMR study showed that Bi(Cys)3 reacts with jack bean urease during a 30 min incubation, releasing free cysteines from the metal complex. Upon incubation with Bi(EDTA) and RBC, the number of accessible cysteine residues in the homohexameric plant enzyme decreased by 5.80 ± 0.17 and 11.94 ± 0.13, respectively, after 3 h of reaction with dithiobis(2-nitrobenzoic acid). Kinetic analysis showed that Bi(EDTA) is both a competitive inhibitor and a time-dependent inactivator of the recombinant Klebsiella aerogenes urease. The active C319A mutant of the bacterial enzyme displays a significantly reduced sensitivity toward inactivation by Bi(EDTA) compared with the wild-type enzyme, consistent with binding of Bi3+ to the active site cysteine (Cys319) as the mechanism of enzyme inactivation.  相似文献   

16.
This work describes the purification and characterization of a trypsin-like enzyme with fibrinolytic activity present in the abdomen of Haematobia irritans irritans (Diptera: Muscidae). The enzyme was purified using a one-step process, consisting of affinity chromatography on SBTI-Sepharose. The purified protease showed one major active proteinase band on reverse zymography with 0.15% gelatin, corresponding to a molecular mass of 25.5 kDa, with maximum activity at pH 9.0. The purified trypsin-like enzyme preferentially hydrolyzed synthetic substrates with arginine residue at the P1 position. The K m values determined for three different substrates were 1.88 × 10–4, 1.28 × 10–4, and 1.40 × 10–4 M for H--benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222), dl-Ile-Pro-Arg-p-nitroanilide (S2288), and DL-Phe-Pip-Arg-p-nitroanilide (S2238), respectively. The enzyme was strongly inhibited by typical serine proteinase inhibitors such as SBTI (soybean trypsin inhibitor, K i = 0.19 nM) and BuXI (Bauhinia ungulata factor Xa inhibitor, K i = 0.48 nM), and less inhibited by LDTI (leech-derived tryptase inhibitor, K i = 1.5 nM) and its variants LDTI 2T and 5T (0.8 and 1.5 nM, respectively). The most effective inhibitor for this protease was r-aprotinin (r-BPTI) with a K i value of 39 pM. Synthetic serine protease inhibitors presented only weak inhibition, e.g., benzamidine with K i = 3.0 × 10–4 M and phenylmethylsulfonyl fluoride (PMSF) showed traces of inhibition. The purified trypsin-like enzyme also digested natural substrates such as fibrinogen and fibrin net. The protease showed higher activity against fibrinogen and fibrin than did bovine trypsin. These data suggest that the proteolytic enzyme of H. irritans irritans is more specific to proteins from blood than are the vertebrate digestive enzymes. This enzyme's characteristics may be an adaptation resulting from the feeding behavior of this hematophagous insect.  相似文献   

17.
It has been found, that ammonium sulfate is effective not only in stabilizing, but also in stimulating the activity of formyltetrahydrofolate synthetase (E. C. 6, 3. 4. 3) purified approximately 500-fold from pea seedlings. Kinetic studies have indicated that the stimulation by ammonium sulfate is due to the enhancement of the binding of the substrate, formate, with the enzyme. The binding of the another substrate, FAH4, with the enzyme was not affected by the addition of ammonium sulfate. The enzyme activity was inhibited by various sulfhydryl reagents, and the inhibition by PCMB was overcome by the addition of l-cysteine. The inhibition by PCMB was competitive with FAH4, and the Ki value for PCMB was 0.8 × 10?6m.  相似文献   

18.
Abstract— Some parameters affecting the activity of monoamine oxidase (MAO) in purified beef brain mitochondria were investigated, and diversities in enzyme properties were found as a function of substrate. The deamination of the biogenic amines: serotonin, dopamine, tyramine, tryptamine, phenylethylamine and two non-physiological amines, kynuramine and m-iodobenzylamine, was studied. Anions in high concentrations inhibited enzyme activity with kynuramine being the substrate most affected. Among the biogenic amines, the activity with the indolalkylamines showed greater sensitivity to mono-valent anions such as chloride than to polyvalent ions such as phosphate whereas the opposite was true with the phenylalkylamines. However, pyrophosphate ion had little or no effect on MAO activity, regardless of substrate. The inhibition of kynuramine and serotonin deamination was non-competitive but mixed competitive inhibition was found with tyramine and phenylethylamine. The activity of MAO was markedly affected by pH, and it had been previously reported that the substrates showed different pH optima in their oxidation. The effect of pH on activity has been attributed in part to changes in the ionization of the substrate and the hypothesis that the true substrate is the non-protonated amine. This was reflected in kinetic studies showing high substrate inhibition with increased pH. It was calculated that phenylethylamine would have the highest percentage of un-ionized amine at pH 8.2 and 9.1. At these pHs, there was more pronounced inhibition with high substrate concentrations of phenylethylamine than with the other substrates. In contrast, there was little inhibition with high substrate concentrations of tyramine which was the most ionizable of the substrates tested. When Km values obtained at pH 7.4, 8.2 and 9.1 were corrected for ionization of the substrate, the corrected Km was lowest at pH 7.4 for all substrates. Less than 50% of MAO activity was lost when beef brain mitochondria was heated at 50°C for 20 min. However, there was only a slight variation with substrate in the thermal inactivation experiments. It is concluded that the mitochondrial membrane environment surrounding the enzyme imposes certain restrictions on the enzymatic activity with respect to the different substrates which, in turn, are also affected by such parameters as pH and ions. The results are discussed in terms of the relationship of these factors to the question of enzyme multiplicity.  相似文献   

19.
An immune ribonucleic acid (iRNA) preparation was made using phenol extracts of spleens of mice previously immunized with Salmonella tennessee flagella. An enzyme, also prepared from the spleens of these mice, induced the incorporation of 3H-UTP into the acid-insoluble fraction in a cell-free system in the presence of this RNA. The enzyme activity could be demonstrated from the spleens of immunized mice but not from normal ones, and this activity was also inhibited by two derivatives of rifamycin. Treatment with ribonuclease or heating at alkaline pH resulted in a loss of activity in added RNA. The 3H-uridine-labeled product was found resistant to ribonuclease treatment but became sensitive when the product was subjected to heat treatment. However, actinomycin D, mitomycin C or bleomycin A2 did not inactivate the enzyme activity. These results suggest that this enzyme induces the incorporation of UTP into the acid-insoluble fraction using iRNA as a template and the product may be a newly synthesized RNA which forms a hybrid with iRNA. This enzyme activity may play a role in the antibody formation process, and may account for the in vivo replication of iRNA by this enzyme, viz., probably an RNA-dependent RNA replicase.  相似文献   

20.
An enzyme “amine transaminase”, which catalyzed transamination between amines and α-keto acids, was found to occur in certain fermentative bacteria, such as Escherichia coli and Aerobacter aerogenes. Using a partially purified enzyme preparation obtained from cell extract of E. coli, some properties of the enzyme were investigated. α-Ketoglutaric acid appeared to be the most efficient amino acceptor and substitution of α-ketoglutaric acid by other α-keto acid resulted in much lower activity. Putrescine, cadaverine and hexamethylenediamine were found to be active as amino donors, but the other monoamines, diamines and polyamines were inert. Treatment of the enzyme with acid ammonium sulfate resolved the enzyme into apo- and coenzyme. The apoenzyme was well reactivated by pyridoxal phosphate as well as pyridoxamine phosphate. Physiological role of the amine transaminase was suggested in relation to the metabolism of amines in bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号