首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Diversity of the killer cell Ig-like receptors of rhesus monkeys   总被引:10,自引:0,他引:10  
Because the killer cell Ig-like receptors (KIRs) have only been characterized in humans and chimpanzees, we do not have a full understanding of their evolutionary history. Therefore, cDNAs encoding the KIR molecules of five rhesus monkeys were characterized, and were found to differ from the KIR molecules identified in humans and chimpanzees. Whereas only one KIR2DL4 molecule is detected in humans and chimpanzees, two distinct KIR2DL4 homologues were identified in the monkeys. Although the two human KIR3DL molecules are limited in their polymorphism, the KIR3DL homologues in the monkeys were highly polymorphic. Up to five KIR3DL homologues were identified in each monkey that was studied, and eleven distinct KIR3DL molecules were detected in the five rhesus monkeys. Two novel families of KIR molecules were identified in the rhesus monkeys, KIR3DH and KIR1D. The KIR3DH molecules have three Ig domains, transmembrane domains homologous to KIR2DL4 molecules that contain an arginine, and short cytoplasmic domains. With these features, the KIR3DH molecules resemble the activating forms of the human KIR molecules. The KIR1D molecule encodes only one complete Ig domain before a frame-shift in the second Ig domain occurs, leading to early termination of the molecule. Multiple splice variants of KIR1D exist that encode at least one Ig domain, as well as transmembrane and cytoplasmic domains. The extensive diversity of the rhesus monkey KIR3DL homologues and the novel KIR3DH and KIR1D molecules suggests that the KIR family of molecules has evolved rapidly during the evolution of primates.  相似文献   

2.
Molecular domains of myelinated axons   总被引:7,自引:0,他引:7  
Myelinated axons are organized into specific domains as the result of interactions with glial cells. Recently, distinct protein complexes of cell adhesion molecules, Na(+) channels and ankyrin G at the nodes, Caspr and contactin in the paranodes, and K(+) channels and Caspr2 in the juxtaparanodal region have been identified, and new insights into the role of the paranodal junctions in the organization of these domains have emerged.  相似文献   

3.
We have identified two distinct collagenous macromolecules in extracts of fetal bovine skin. Each of the molecules appears to contain three identical alpha-chains with short triple-helical domains of approximately 25 kD, and nontriple-helical domains of approximately 190 kD. Consistent with these observations, extracted molecules contain a relatively short triple-helical domain (75 nm) and a large globular domain comprised of three similar arms. Despite these similarities, the purified collagenase-resistant domains are distinguished by a number of criteria. The globular domains can be chromatographically separated on the basis of charge distribution. Peptide profiles generated by V8 protease digestion are dissimilar. These molecules are immunologically unique and have distinct distributions in tissue. Finally, rotary shadow analysis of purified domains identifies size and conformation differences. Structurally, the molecules are very similar to type XII collagen, but differ in tissue distribution, since both these molecules are present in cartilage, while type XII is reported to be absent from that tissue.  相似文献   

4.
Membranes are sites of intense signaling activity within the cell, serving as dynamic scaffolds for the recruitment of signaling molecules and their substrates. The specific and reversible localization of these signaling molecules to membranes is critical for the appropriate activation of downstream signaling pathways. Phospholipid-binding domains, including C1, C2, PH, and PX domains, play critical roles in the membrane targeting of protein kinases. Recent structural studies have identified a new membrane association domain, the Kinase Associated 1 (KA1) domain, which targets a number of yeast and mammalian protein kinases to membranes containing acidic phospholipids. Despite an abundance of localization studies on lipid-binding proteins and structural studies of the isolated lipid-binding domains, the question of how membrane binding is coupled to the activation of the kinase catalytic domain has been virtually untouched. Recently, structural studies on protein kinase C (PKC) have provided some of the first structural insights into the allosteric regulation of protein kinases by lipid second messengers.  相似文献   

5.
Epithelial cell adhesion molecules   总被引:12,自引:0,他引:12  
Recognition and binding between cells are of fundamental importance for a proper function of multicellular organisms, both during embryonic development and in the adult stage. Recently several cell surface proteins that are involved in these phenomena have been discovered. In the identification of these proteins, called cell adhesion molecules (CAMs), immunological methods have played a significant role. In a different approach to studies of cell-cell binding at the molecular level, the chemical composition of intercellular junctions is being studied. Intercellular junctions are specialized cell surface domains that have been identified by electron microscopy. They are particularly well developed in epithelia. Several proteins in the junctions have now been identified and characterized. This review deals with the biochemical properties of epithelial CAMs, and those proteins that are candidates for cell-to-cell binding in the junctions. In particular, the relationships between the various CAMs and junctional proteins are discussed. The tentative biological functions of these molecules are also considered.  相似文献   

6.
Two recently identified collagen molecules, termed twelve-like A and twelve-like B (TL-A and TL-B) have properties similar to type XII collagen. These molecules have been localized in human and calf tissues by immunoelectron microscopy. The observations strongly suggest that both molecules are located along the surface of banded collagen fibers. The epitopes recognized by the antibodies are contained in large, nontriple-helical domains at one end of the collagen helix. The epitopes are visualized at a distance from the surface of the banded fibers roughly equal to the length of the nonhelical domains, suggesting that the nonhelical domains extend from the fibril, while the triple-helical domains are likely to bind directly to the fibril surface. Occasionally, both TL-A and TL-B demonstrate periodic distribution along the fibril surface. The period corresponds to the primary interband distance of the banded fibrils. Not all fibrils in a fiber bundle are labeled, nor is the labeling continuous along the length of labeled fibrils. Simultaneous labeling of TL-A and type VI collagen only rarely shows colocalization, suggesting that TL-A and TL-B do not mediate interactions between the type VI collagen beaded filaments and banded collagen fibrils. Also, interfibrillar distances are approximately equivalent in the presence and absence of these type XII-like molecules. While the results do not directly indicate a specific function for these molecules, the localization at the fibril surface suggests that they mediate interactions between the fibrils and other matrix macromolecules or with cells.  相似文献   

7.
Lin H  Lal R  Clegg DO 《Biochemistry》2000,39(12):3192-3196
Fibronectin is composed of multiple homologous repeats and contains many functional domains. Two major heparin-binding domains have previously been identified: the Hep I site near the amino terminus and the Hep II site near the carboxyl terminus. The Hep II site has been considered the high-affinity heparin-binding site based on studies of fibronectin fragments. However, few studies have been carried out on heparin binding by intact fibronectin. We imaged single fibronectin molecules as well as heparin-coated gold particles bound to whole dimeric plasma fibronectin molecules with tapping mode atomic force microscopy. We observed heparin-gold particles preferentially bound at two locations that correspond to the Hep I and Hep II sites. Quantitative analysis of images of individual fibronectin-heparin-gold complexes showed that almost twice as many heparin-gold particles bound to the N-terminal Hep I site compared to the Hep II site. In contrast to previous findings with fibronectin fragments, these results suggest that the Hep I site has a binding affinity higher than or comparable to the Hep II site in the intact fibronectin molecule.  相似文献   

8.
Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that include neurexins and neuroligins, Ig-domain proteins such as SynCAMs, receptor phosphotyrosine kinases and phosphatases, and several leucine-rich repeat proteins have been identified. These synaptic cell adhesion molecules use characteristic extracellular domains to perform complementary roles in organizing synaptic junctions that are only now being revealed. The importance of synaptic cell adhesion molecules for brain function is highlighted by recent findings implicating several such molecules, notably neurexins and neuroligins, in schizophrenia and autism.  相似文献   

9.
Endosome-to-Golgi retrieval of the carboxypeptidase Y receptor Vps10p is mediated by a recently discovered membrane coat complex termed retromer. Retromer comprises five conserved proteins: Vps35p, Vps29p, Vps5p, Vps17p, and Vps26p. Vps35p recognizes cargo molecules such as Vps10p and interacts strongly with Vps29p. Vps5p forms a subcomplex with Vps17p and has been proposed to play a structural role by self-assembling into large multimeric structures. The function of Vps26p is currently unknown. We have investigated the role that Vps26p plays in retromer-mediated endosome-to-Golgi transport by analyzing dominant negative alleles of Vps26p. These mutants have identified a crucial region of Vps26p that plays an important role in its function. Functional domains of Vps26p have been investigated by the creation of yeast-mouse hybrid molecules in which domains of Vps26p have been replaced by the similar domain in the protein encoded by the mouse VPS26 gene, Hbeta58. These domain swap experiments have shown that Vps26p promotes the interactions between the cargo-selective component Vps35p and the structural components Vps5p/Vps17p.  相似文献   

10.
Extracellular matrix molecules are often very large and made up of several independent domains, frequently with autonomous activities. Laminin is no exception. A number of globular and rod-like domains can be identified in laminin and its isoforms by sequence analysis as well as by electron microscopy. Here we present the structure-function relations in laminins by examination of their individual domains. This approach to viewing laminin is based on recent results from several laboratories. First, some mutations in laminin genes that cause disease have affected single laminin domains, and some laminin isoforms lack particular domains. These mutants and isoforms are informative with regard to the activities of the mutated and missing domains. Second, laminin-like domains have now been found in a number of other proteins, and data on these proteins may be informative in terms of structure-function relationships in laminin. Finally, a large body of data has accumulated on the structure and activities of proteolytic fragments, recombinant fragments, and synthetic peptides from laminin. The proposed activities of these domains can now be confirmed and extended by in vivo experiments. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.  相似文献   

12.
Protein domains are conspicuous structural units in globular proteins, and their identification has been a topic of intense biochemical interest dating back to the earlier crystal structures. Numerous disparate domain identification algorithms have been proposed, all involving some combination of visual intuition and/or structure-based decomposition. Instead, we present a rigorous thermodynamically based approach that redefines domains as cooperative chain segments. In greater detail, most small proteins fold with high cooperativity, meaning that the equilibrium population is dominated by completely folded and unfolded molecules, with a negligible subpopulation of partially folded intermediates. Here, domains are equated to chain segments that retain full cooperativity when excised from their parent structures. Implementing this approach computationally, the domains in a large representative set of proteins were identified; all exhibit consistency with experimental findings. Our reframed interpretation of a protein domain transforms an indeterminate structural phenomenon into a quantifiable molecular property, grounded in solution thermodynamics.  相似文献   

13.
14.
Protein tyrosine phosphorylation and dephosphorylation have been implicated in the growth and functional responses of hematopoietic cells. Recent studies have identified a novel protein tyrosine phosphatase, termed hematopoietic cell phosphatase (HCP) or PTP1C, that is predominantly expressed in hematopoietic cells. HCP encodes a cytoplasmic phosphatase that contains two src homology 2 (SH2) domains. Since SH2 domains have been shown to target the association of signal-transducing molecules with activated growth factor receptors containing intrinsic protein kinase activity, we assessed the association of HCP with two hematopoietic growth factor receptors, c-Kit and c-Fms. The results demonstrate that HCP transiently associates with ligand-activated c-Kit but not c-Fms and that this association occurs through the SH2 domains. In both colony-stimulating factor 1- and stem cell factor-stimulated cells, there is a marginal increase in tyrosine phosphorylation of HCP. Lastly, HCP can dephosphorylate autophosphorylated c-Kit and c-Fms in in vitro reactions. The potential role of HCP in stem cell factor signal transduction is discussed.  相似文献   

15.
Five members of the human CEA gene family [human pregnancy-specific beta 1-glycoprotein (PS beta G); hsCGM1, 2, 3 and 4] have been isolated and identified through sequencing the exons containing their N-terminal domains. Sequence comparisons with published data for CEA and related molecules reveal the existence of highly-conserved gene subgroups within the CEA family. Together with published data eleven CEA family members have so far been determined. Apart from the highly conserved coding sequences, these genes also show strong sequence conservation in their introns, indicating a duplication of whole gene units during the evolution of the CEA gene family.  相似文献   

16.
Research into phospholipid signaling continues to flourish, as more and more bioactive lipids and proteins are being identified and their actions characterised. The Pleckstrin homology (PH) domain is one such newly recognized protein module thought to play an important role in intracellular signal transduction. The tertiary structures of several PH domains have been determined, some of them complexed with ligands and on the basis of structural similarities between PH domains and lipid binding proteins it has been suggested that PH domains may be binding to lipophilic molecules. In fact many of the proteins that contain this domain can interfere with the membrane association. This review examines the specificity of this binding and illustrates the importance of charge-charge interactions in PIP2-PH domain complex formation. The precise physiological functions of PH domain in vivo remains to be explored therefore this review examines the biochemical aspects of the interaction of PH domains with phospholipid breakdown mediated products and proto-oncogenic serine-threonine kinase (Akt), protein tyrosine kinases, which have been found to be a target of phospholipid second messengers. Thus, number of cellular processes mediated by this way, ranging from insulin signaling and protein synthesis to differentiation and cell survival are regulated by this intracellular signaling protein module.  相似文献   

17.
Ten-m/Odz/teneurins are a new family of four distinct type II transmembrane molecules. Their extracellular domains are composed of an array of eight consecutive EGF modules followed by a large globular domain. Two of the eight modules contain only 5 instead of the typical 6 cysteine residues and have the capability to dimerize in a covalent, disulfide-linked fashion. The structural properties of the extracellular domains of all four mouse Ten-m proteins have been analyzed using secreted, recombinant molecules produced by mammalian HEK-293 cells. Electron microscopic analysis supported by analytical ultracentrifugation data revealed that the recombinant extracellular domains of all Ten-m proteins formed homodimers. SDS-PAGE analysis under nonreducing conditions as well as negative staining after partial denaturation of the molecules indicated that the globular COOH-terminal domains of Ten-m1 and -m4 contained subdomains with a pronounced stability against denaturing agents, especially when compared with the homologous domains of Ten-m2 and -m3. Cotransfection experiments of mammalian cells with two different extracellular domains revealed that Ten-m molecules have also the ability to form heterodimers, a property that, combined with alternative splicing events, allows the formation of a multitude of molecules with different characteristics from a limited set of genes.  相似文献   

18.
The combination of leucine-rich repeat (LRR) and immunoglobulin-like (Ig) domains is found in the domain architecture of the Trk neurotrophin receptor protein. Recently dozens of such proteins simultaneously carrying LRR and Ig domains as the Trk receptors have been identified. Given the significant biological roles of Trk and such newly identified proteins, we have searched the public database for human proteins with LRR and Ig domains (collectively termed the leucine-rich repeat and Ig domain-containing protein, LRRIG protein, in this study), and have analyzed the mRNA expression pattern of mouse orthologs of obtained human LRRIG proteins at embryonic day 10. The list of the LRRIG proteins includes 36 human proteins: four LINGO, three NGL, five SALM, three NLRR, three Pal, two ISLR, three LRIG, two GPR, two Adlican, two Peroxidasin-like proteins, three Trk neurotrophin receptors, a yet unnamed protein AAI11068, and three AMIGO. Some molecules (LINGO2, LINGO4, NGL1, SALM1, SALM5, and TrkB) were expressed exclusively in neuronal tissues, whereas others (ISLR1, GPR124, and Adlican2) exhibited non-neuronal expression profiles. However, the majority of LRRIG protein family exhibited broad mRNA tissue-expression profiles.  相似文献   

19.
In the present review we summarize sequence data obtained from cloning of sponge receptor tyrosine kinases [RTK]. The cDNA sequences were mainly obtained from the marine sponge Geodia cydonium. RTKs (i) with immunoglobulin [Ig]-like domains in the extracellular region, (ii) of the type of insulin-like receptors, as well as (iii) RTKs with one extracellular speract domain, have been identified. The analyses revealed that the RTK genes are constructed in blocks [domains], suggesting a blockwise evolution. The phylogenetic relationships of the sequences obtained revealed that all sponge sequences fall into one branch of the evolutionary tree, while related sequences from higher Metazoa, human, mouse and rat, including also invertebrate sequences, together form a second branch. It is concluded that the RTK molecules have evolved in sponges prior to the "Cambrian Explosion" and have contributed to the rapid appearance of the higher metazoan phyla and that sponges are, as a taxon, also monophyletic. Due to the fact that protein tyrosine kinases in general and RTKs in particular have only been identified in Metazoa, they are, as a group qualified, to be considered as an autapomorphic character of all metazoan phyla.  相似文献   

20.
Venoms are cocktails containing pharmacologically active compounds, which drastically affect essential functions of the neuromuscular and cardiovascular system, as well as of blood, kidney and other organs. As the extracellular matrix and its contacts with cells are responsible for maintaining the integrity and functionality of these organs and tissues, it is not surprising that several venom components target matrix molecules and their respective cellular receptors. Many venom components, such as matrix-degrading enzymes, disintegrins, and C-type lectin-like proteins, have been identified and have laid the foundation for the frontier research field of matrix toxinology. Interestingly, many toxins consist of domains which are structurally homologous to modules and domains of matrix proteins, their proteinases and cellular receptors. In addition to finding new agents and tools, which specifically interact with matrix molecules and their receptors, the characterization of known matrix-targeting toxins will provide insights into their molecular modes of action and thus may lead to potential new therapeutic strategies for treating matrix-related diseases, such as blood clotting and thrombocyte-mediated disorders, but also tumor malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号