首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grafting rootstocks are widely used to enhance plants resistance to various biologic and abiotic stresses. We determined how the rootstock genotype might influence plant responses to drought, using 2-year-old ‘Gale Gala’ apple trees grafted onto Malus sieversii and M. hupehensis. Under water stress, trees with the former as their rootstock had smaller reductions in rates of relative growth and photosynthesis, total biomass, leaf area, levels of leaf chlorophyll, and relative water content compared with those grafted onto the latter. They also had greater maximum photochemical efficiency and water-use efficiency. On the other hand, trees growing on M. sieversii rootstock had less production of superoxide radicals and hydrogen peroxide in both leaves and roots than those growing on M. hupehensis in response to drought stress. Furthermore, under drought conditions, leaves and roots from trees grafted onto M. sieversii had greater synthesis of ascorbic acid and glutathione, as well as higher activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that the choice of grafting rootstock can enhance drought resistance by improving the antioxidant system in a plant. Here, ‘Gale Gala’ trees grafted onto M. sieversii were more drought-resistant than those on M. hupehensis rootstock.  相似文献   

2.
The present study evaluates the effects of severe drought stress on the content of phenolic compounds in olive leaves, namely hydroxytyrosol, tyrosol, p-hydroxybenzoic acid, catechin, luteolin 7-O-rutinoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, quercetin, apigenin, pinoresinol, oleuropein and verbascoside in greenhouse-grown plantlets. The results showed that oleuropein, verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside were the most important phenolic compound of stressed olive plants and can represent up to 84% of the total amount of the identified phenolic compounds. Application of drought stress caused a significant increase in the level of oleuropein (87%), verbascoside (78%), luteolin 7-O-glucoside (72%) and apigenin 7-O-glucoside (85%), when compared to the control. The elevated values of these phenolic compounds can help controlling the water status of olive plants and avoiding serious oxidative damage induced by water deficit stress. To our knowledge, this is the first report to show the boost in the concentrations of verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside in the leaves of olive trees after water deficit stress.  相似文献   

3.
Effects of free proline accumulation in petunias under drought stress   总被引:29,自引:0,他引:29  
Petunias (Petunia hybrida cv. 'Mitchell') accumulate free proline (Pro) under drought-stress conditions. It is therefore believed that Pro acts as an osmoprotectant in plants subjected to drought conditions. Petunia plants were transformed by Delta(1)-pyrroline-5-carboxylate synthetase genes (AtP5CS from Arabidopsis thaliana L. or OsP5CS from Oryza sativa L.). The transgenic plants accumulated Pro and their drought tolerance was tested. The Pro content amounted to 0.57-1.01% of the total amino acids in the transgenic plants, or 1.5-2.6 times that in wild-type plants grown under normal conditions. The transgenic plant lines tolerated 14 d of drought stress, which confirms that both P5CS transgenes had full functionality. Exogenous L-Pro treatment caused the plants to accumulate Pro; plants treated with 5 mM L-Pro accumulated up to 18 times more free Pro than untreated plants. Exogenous L-Pro restricted the growth of wild-type petunias more than that of Arabidopsis plants. The capacity for free Pro accumulation might depend on the plant species. The growth of petunia plants was influenced not only by the Pro concentration in the plants, but by the ratio of the Pro content to the total amino acids, because the growth of the transgenic petunia plants appeared normal.  相似文献   

4.
以发草(Deschampsia caespitosa)为供试材料,通过盆栽模拟水分胁迫,研究重度干旱、中度干旱、轻度干旱、植物正常需水量(对照)、轻度水涝、中度水涝、重度水涝处理下发草叶片脯氨酸(Pro)积累状况及其代谢途径中底物、中间产物和关键酶的动态变化,以期从脯氨酸代谢途径对发草抗旱/涝机理进行初步探讨。结果显示,干旱和水涝胁迫前期发草叶片Pro含量显著升高,谷氨酸(Glu)和鸟氨酸(Orn)含量显著下降,Δ1-吡咯琳-5-羧酸合成酶(P5CS)活性、鸟氨酸转氨酶(δ-OAT)活性、Δ1-吡咯琳-5-羧酸还原酶(P5CR)活性均显著增强,而脯氨酸脱氢酶(ProDH)活性显著降低,表明干旱和水涝胁迫前期发草叶片通过脯氨酸合成代谢的加强和分解代谢的抑制共同积累脯氨酸,以缓解干旱和水涝胁迫产生的危害,Glu途径和Orn途径协同作用于叶片脯氨酸合成代谢过程。中度、轻度干旱和轻度水涝处理21 d后Pro含量趋于稳定,持续21 d的重度干旱处理和持续28 d的重度水涝处理时发草死亡,共同显示了发草对水涝和干旱具有较强的耐受性。结论为高寒沼泽湿地旱涝"共耐性"植物的研究提供理论基础,同时为利用发草开展退化高寒沼泽湿地植被恢复提供科学依据。  相似文献   

5.
6.
The ability of exogenous compatible solutes, such as proline, to counteract salt inhibitory effects was investigated in 2-year-old olive trees (Olea europaea L. cv. Chemlali) subjected to different saline water irrigation levels supplied or not with exogenous proline. Leaf water relations [relative water content (RWC), water potential], photosynthetic activity, leaf chlorophyll content, and starch contents were measured in young and old leaves. Salt ions (Na+, K+, and Ca2+), proline and soluble sugars contents were determined in leaf and root tissues. Supplementary proline significantly mitigated the adverse effects of salinity via the improvement of photosynthetic activity (Pn), RWC, chlorophyll and carotenoid, and starch contents. Pn of young leaves in the presence of 25 mM proline was at 1.18 and 1.38 times higher than the values recorded under moderate (SS1) and high salinity (SS2) treatments, respectively. Further, the proline supply seems to have a more important relaxing effect on the photosynthetic chain in young than in old leaves of salt-stressed olive plants. The differential pattern of proline content between young and old leaves suggests that there would be a difference between these tissues in distinguishing between the proline taken from the growing media and that produced as a result of salinity stress. Besides, the large reduction in Na+ accumulation in leaves and roots in the presence of proline could be due to its interference in osmotic adjustment process and/or its dilution by proline supply. Moreover, the lower accumulation of Na+ in proline-treated plants, compared to their corresponding salinity treatment, displayed the improved effect of proline on the ability of roots to exclude the salt ions from the xylem sap flowing to the shoot, and thus better growth rates.  相似文献   

7.
O. Osonubi  W. J. Davies 《Oecologia》1978,32(3):323-332
Summary Young seedlings of English Oak, Quercus robur L., and Silver Birch, Betula verrucosa Ehrl., were subjected to a number of consecutive periods during which water was withheld. During one 14-day period leaf-and soil-water potentials and leaf- and root-solute potentials of two groups of plants were sampled at noon of each day. One group of plants was watered every day while water was withheld from the other group. Solute accumulation in roots and leaves of oak seedlings subjected to water stress resulted in maintenance of turgor and high leaf conductance as the soil dried. In birch seedlings turgor was only maintained by stomatal closure at high soil water potential.Fourteen consecutive water stress cycles greatly reduced the growth of birch seedlings but had little effect on oak seedlings other than to alter root morphology. Water stress treatment resulted in the production of long thin roots in this plant. Stomatal behaviour in oak and birch seedlings during the 14-week stress period was consistent with observed changes in leaf water and solute potentials. Daily solute accumulation in oak leaves was presumably responsible for the maintenance of plant growth as water potentials fell.  相似文献   

8.
The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione S-transferase (GST) as well as proline content were studied in leaves and roots of 14 day-old pea plants treated with NiSO4 (10, 100, 200 μm) for 1, 3, 6 and 9 days. Exposure of pea plants to nickel (Ni) resulted in the decrease in CuZnSOD as well as total SOD activities in both leaves and roots. The activity of APX in leaves of plants treated with 100 and 200 μm Ni increased following the 3rd day after metal application, while in roots at the end of the experiment the activity of this enzyme was significantly reduced. In both organs CAT activity generally did not change in response to Ni treatment. The activity of GST in plants exposed to high concentrations of Ni increased, more markedly in roots. In both leaves and roots after Ni application accumulation of free proline was observed, but in the case of leaves concentration of this amino acid increased earlier and to a greater extent than in roots. The results indicate that stimulation of GST activity and accumulation of proline in the tissues rather than antioxidative enzymes are involved in response of pea plants to Ni stress.  相似文献   

9.
Metabolic responses to water deficit that lead to an accumulation of cyclitols, have been examined in rice bean ( Vigna umbellata [Thunb.] Ohwi et Ohashi). Imposition of drought stress by withholding water from the soil for 9 days led to an accumulation of D-ononitol (lD-4- O -methyl- myo -inositol) which was most pronounced in leaves (from 33 to 88 umol g−1 dry mass). However, the activity of the enzyme myo-inositol 6-O -methyltransferase (m6OMT, EC 2.1.1.X), which catalyzes the synthesis of ononitol from myo -inositol and S -adenosyl-L-methionine (AdoMet), increased in stems but not in leaves during the drought stress experiment. Detailed analysis of different plant parts revealed that the accumulation of ononitol in leaves was linearly related to stem m6OMT activity during drought stress, indicating that m6OMT may control the in vivo biosynthetic rate of this cyclitol. The availability of myo -inositol, required for enhanced rates of ononitol synthesis by m6OMT, increased during the stress experiment, while the capacity to synthezise AdoMet by S -adenosyl-L-methionine synthetase (SMS, EC 2.5.1.6) decreased. However, the high capacity for degradation of S -adenosyl-L-homocysteine (AdoHcy; a potent competitive inhibitor of m6OMT) by the enzyme S -adenosyl-L-homocysteine hydrolase (SHH, EC 3.3.1.1) provided favourable conditions for ononitol biosynthesis during the whole stress treatment.  相似文献   

10.
Most of the studies investigated the effects of nutrient-based fertilizers on olive fruits and oil quality; few studies have been interested in the modification of the chemical composition of olive leaves in response to fertilization. Thus, the current study aims to examine the effects of foliar fertilization on the mineral profile of olive leaves as well as the concentrations of chlorophyll, antioxidants (phenolic compounds) and carbohydrates. Experimentation consists of the annual application of six treatments during two successive growing seasons (2009–2010): TC (untreated trees), P1 (nitrogen-based fertilizer), P2 (contains boron, magnesium and manganese), P3 (phosphorus and potassium based fertilizer), P4 (rich in calcium and phosphorus), T5 (P1 and P2 application) and T6 (P1, P2, P3 and P4 application). At the end of the experiment, mineral analysis of olive leaves showed an increase in the concentrations of most nutrients which induced changes in biochemical composition: an increase of chlorophyll content, a reduction of total phenols and oleuropein concentrations coupled with an increase of hydroxytyrosol level. Moreover, an increase of total sugar content and most individual sugars, principally translocated forms of sugars (mannitol, sucrose and raffinose), was also observed. The accumulation of these key physiological parameters by foliar fertilization suggests an improvement of physiological performance and photosynthetic capacity of olive trees. Moreover, from a biological point of view, the results of the study revealed the possibility to improve plants of medicinal interest by enhancing the accumulation of some bio-active compounds, such as hydroxytyrosol and mannitol, via foliar nutrient supply.  相似文献   

11.
Ammonium accumulation in relation to prolineaccumulation in detached rice leaves under stressconditions was investigated. Ammonium accumulation indark-treated detached rice leaves preceded prolineaccumulation. Ammonium accumulation caused by waterstress coincided closely with proline accumulation indetached rice leaves. Exogenous NH4Cl andmethionine sulfoximine (MSO), which caused anaccumulation of ammonium in detached rice leaves,increased proline content. It was found that prolinein NH4Cl- or MSO-treated rice leaves is lessutilized than in water-treated rice leaves (controls). These results are in agreement with the observationthat a decrease in proline utilization contributes tothe accumulation of proline in dark-treated and waterstressed rice leaves. Although ammonium contentincreased in Cd- and Cu-treated rice leaves, theincrease in ammonium content was only observed afterthe increase in proline content.  相似文献   

12.
Wheat (Triticum aestivum L. cv. ‘Zyta’) seedlings were treated with 10, 100 and 200 μM Ni. Tissue Ni accumulation, length, relative water content (RWC), proline and H2O2 concentrations as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and glutathione S-transferase (GST) were studied in the shoots and roots after 6 days of Ni exposure. Treatment with Ni, except for its lowest concentration, resulted in a significant reduction in wheat growth. In comparison to the shoots, the roots showed greater inhibition of elongation, which corresponded with higher accumulation of Ni in these organs. Both shoots and roots responded to Ni application with a decrease in RWC and enhancement in proline concentration. Greater dehydration of the shoot tissue was accompanied by more intense accumulation of proline. Treatment of the wheat seedlings with the highest concentration of Ni led to about 60% increase in H2O2 concentration in both studied organs. Apart from CAT, constitutive activities of antioxidative enzymes were much higher in the roots than in the shoots. Exposure of the seedlings to Ni resulted in SOD activity decline, which was more marked in the roots. While the shoots showed a substantial decrease (up to 30%) in CAT activity, in the roots the activity of this enzyme remained unchanged. After Ni application APX, POD and GST activities increased several-fold in the shoots, whereas in the roots they were not significantly altered. The results suggest that differential antioxidative responses of the shoots and roots of wheat seedlings to Ni stress might be related to diverse constitutive levels of antioxidant enzyme activities in both organs.  相似文献   

13.
The aim of this study is to evaluate the contribution of bacteroidproline catabolism as an adaptation to drought stress in soybeanplants. To accomplish this, soybeans (Glycine max L. Merr.)were inoculated with either a parental strain of Bradyrhizobiumjaponicum which was able to catabolize proline, or a mutantstrain unable to catabolize proline. A large strain-dependentdifference in nodule number and size was observed. In orderto separate inoculant-dependent effects on nodulation from effectson bacteroid proline catabolism, plants inoculated with eachstrain were only compared to other plants inoculated with thesame strain, thus removing the observed inoculant-dependentdifferences in nodulation as a bar to interpretation of theresults. This experimental design allowed a comparison of thedrought penalty on yield for plants with parental bacteroidsand for plants with mutant bacteroids. The two results werethen compared to each other in order to evaluate the impactof the ability of bacteroids to catabolize proline on the responseto drought stress. When water stress was mild, soybean plants inoculated with bacteriaunable to catabolize proline suffered twice the percentage decreasein seed yield as did plants inoculated with bacteria able tocatabolize proline. However, when stress was severe there wasno significant effect of the ability of bacteroids to catabolizeproline on drought imposed decrease in seed yield. These resultssuggest that increasing the oxidative flux of proline in bacteroidsmight provide an agronomically significant yield advantage whenstress is modest, but that severe drought stress would probablyoverwhelm this yield benefit. Key words: N2-fixation, proline dehydrogenase, drought stress  相似文献   

14.
Accumulation of proline in response to NH4Cl was studied indetached leaves of rice (Oryza sativa cv. Taichung Native1). Increasing concentrations of NH4Cl from 50 to 200mMprogressively increased proline content and this was correlated with theincrease in ammonium content. Proline accumulation induced by NH4Clwas related to proteolysis, an increase in ornithine--aminotransferaseactivity, a decrease in proline dehydrogenase activity, and a decrease inproline utilisation and could not be explained by NH4Cl-inducedmodification in 1-pyrroline-5-carboxylate reductase activity.The content of glutamic acid was decreased by NH4Cl, whereas theincrease in arginine and ornithine contents was found to be associated with theincrease in proline content in NH4Cl-treated detached rice leaves.  相似文献   

15.
16.
Proline accumulation was studied in the leaves of Glycine max (L.) Merr. subjected to salt stress in the presence of aminoguanidine (AG, a specific inhibitor of diamine oxidase, DAO) and exogenous putrescine (Put). Both DAO activity and proline content were increased while endogenous Put content was decreased in soybean leaves under 50 to 150 mM NaCl. There was a negative correlation between proline accumulation and endogenous Put content. The addition of AG during NaCl stress inhibited DAO activity, caused Put accumulation and a 15 to 20 % decrease in proline content. Application of 1 mM Put to NaCl solution markedly increased proline content. The promotive effect of Put application could be alleviated by the treatment with Put plus AG. Moreover an application of AG had no effect on proline accumulation in soybean seedlings grown under normal condition. These results indicate that the quantitative contribution of Put degradation to proline formation is 15 to 20 %.  相似文献   

17.
To characterize the molecular response of holm oak to drought stress and its capacity to recover 9-month-old Quercus ilex seedlings were subjected to three treatments for a 14-d period: (i) continuous watering to field capacity (control plants, W), (ii) no irrigation (drought treatment, D), and (iii) no irrigation for 7d followed by a watering period of 7d (recovery treatment, R). In drought plants, leaf water potential decreased from -0.72 (day 0) to -0.99MPa (day 7), and -1.50MPa (day 14). Shoot relative water content decreased from 49.3% (day 0) to 47.7% (day 7) and 40.8% (day 14). Photosystem II quantum yield decreased from 0.80 (day 0) to 0.72 (day 7) and 0.73 (day 14). Plants subjected to water withholding for 7d reached, after a 7-d rewatering period, values similar to those of continuously irrigated control plants. Changes in the leaf protein pattern in response to drought and recovery treatments were analyzed by using a proteomic approach. Twenty-three different spots were observed when comparing the two-dimensional electrophoresis profile of control to both drought and recovered plants. From these, 14 proteins were identified from tryptic peptides tandem mass spectra by using the new Paragon algorithm present in the ProteinPilot software. The proteins identified belong to the photosynthesis, carbohydrate and nitrogen metabolism, and stress-related protein functional categories.  相似文献   

18.
Antioxidant response of wheat roots to drought acclimation   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum L.) seedlings of a drought-resistant cv. C306 were subjected to severe water deficit directly or through stress cycles of increasing intensity with intermittent recovery periods. The antioxidant defense in terms of redox metabolites and enzymes in root cells and mitochondria was examined in relation to membrane damage. Acclimated seedlings exhibited higher relative water content and were able to limit the accumulation of H2O2 and membrane damage during subsequent severe water stress conditions. This was due to systematic up-regulation of superoxide dismutase, ascorbate peroxidase (APX), catalase, peroxidases, and ascorbate–glutathione cycle components at both the whole cell level as well as in mitochondria. In contrast, direct exposure of severe water stress to non-acclimated seedlings caused greater water loss, excessive accumulation of H2O2 followed by elevated lipid peroxidation due to the poor antioxidant enzyme response particularly of APX, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and ascorbate–glutathione redox balance. Mitochondrial antioxidant defense was found to be better than the cellular defense in non-acclimated roots. Termination of stress followed by rewatering leads to a rapid enhancement in all the antioxidant defense components in non-acclimated roots, which suggested that the excess levels of H2O2 during severe water stress conditions might have inhibited or down-regulated the antioxidant enzymes. Hence, drought acclimation conferred enhanced tolerance toward oxidative stress in the root tissue of wheat seedlings due to both reactive oxygen species restriction and well-coordinated induction of antioxidant defense.  相似文献   

19.
20.
Root sugar accumulation was studied in two grapevine varieties contrasting in tolerance to water stress. During a 10‐day water withholding treatment, the drought‐tolerant variety, Grenache, sustained less negative predawn and midday leaf water potentials as well as root water potential compared with the sensitive variety, Semillon. Grenache vines also maintained lower stomatal conductance and transpiration than Semillon vines throughout the drying period. In both varieties there was accumulation of sucrose in the roots and concentrations were inversely correlated to leaf and root water status. In both Grenache and Semillon, elevated root osmolality was associated with decreased soil moisture indicating that sugar accumulation may play a role in osmotic protection. Petiole xylem sap abscisic acid (ABA) concentrations increased with water deficit in both varieties and were highest for vines with the most negative root and predawn leaf water potentials. Furthermore, root sucrose concentrations were positively correlated with leaf xylem sap ABA concentrations, indicative of integration between carbohydrate metabolism and the ABA signalling system. Similar root sugar accumulation patterns between the two varieties, however, demonstrate that other factors are likely influencing the ability of the drought‐tolerant variety to remain hydrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号