首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
2.
The metabolism of the ribosomal and soluble protein components of Aerobacter aerogenes was examined during its incubation in a Mg(++)-deficient medium. Bacteria were exposed to leucine-H(3) during the exponential growth period preceding Mg(++) starvation, and extracts were prepared after intervals of starvation and were centrifuged through gradients of sucrose to separate ribosomal from soluble proteins. Ribosomal proteins synthesized during the preceding exponential growth were slowly lost from the ribosomes; after 8 hr of starvation, few, if any, sedimented with ribosomes. Losses of total protein, together with the known rate of ribosome decay during Mg(++) starvation, suggested that these ribosomal proteins are ultimately degraded to acid-soluble products and account for all protein lost by the starving cells. These conclusions were supported by studies of Mg(++) starvation in a uracil-requiring strain of A. aerogenes: during uracil starvation a smaller fraction of the proteins synthesized were ribosomal, and the fraction of protein which subsequently decayed during Mg(++) starvation was correspondingly less. During recovery from Mg(++) starvation, proteins, lost from disintegrated ribosomes, were not detectably reutilized into new particles even before their degradation to acid-soluble products was complete. Synthesis of soluble proteins continued for more than 24 hr of starvation at a rate per milliliter close to 45% of the instantaneous rate per milliliter of the exponentially growing bacteria at the time Mg(++) was removed. This value agreed with that found previously for synthetic rates of deoxyribonucleic acid, transfer ribonucleic acid, and ribosomal ribonucleic acid during starvation relative to rates during exponential growth.  相似文献   

3.
The effect of magnesium starvation upon the fate of individual ribosomal proteins was studied in Escherichia coli. During a 21 h incubation in the absence of Mg2+ the 30 S subunit was more susceptible to degradation, retaining an average 31.9% of its ribosomal proteins as compared to 40.0% for the 50 S subunit. An examination of those 50-S proteins dissociated to a lesser extent than the average value (L1, L2, L3, L7, L10, L13, L16, L17, L19, L21, L22, L23, and L29) revealed that, with the exception of L16, all were classified by Dohme and Nierhaus [5] as tightly bound. Of the ribosomal proteins dissocated during magnesium starvation only five were reincorporated (and these to a minimal degree) during recovery of cells in a medium containing Mg2+. These studies suggest that ribosomal proteins once released from the ribosome particles during magnesium starvation are not reutilized in the assembly of new subunits.  相似文献   

4.
The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel+ and rel- cells, under valyltRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer to the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel+ strain appear more labelled than those from the rel- strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene.  相似文献   

5.
The rate of synthesis of ribosomal proteins relative to that of total protein was measured at various times during recovery from arginine starvation in isogenic re+ and rel- strains of Escherichia coli K 12. Total ribosomal proteins are preferentially synthesized early during recovery. Higher rates of synthesis are obtained in the rel+ strain than in the rel- strain. Differential rates of synthesis of individual ribosomal proteins are observed at the various times studied. The rate of synthesis of individual proteins increases with time up to maximum values then the rates come down to values similar to those found in exponentially growing cells. The time of restart of synthesis of each protein has been estimated (1) by the time at which the maximum value is reached, and (2) by measuring the rate of synthesis at early time (3 min). Most ribosomal proteins behave similarlly in rel- and rel+ strains. Proteins have been listed from highly labelled (early proteins) to poorly labelled (late proteins). The significance of the order of restart is considered.  相似文献   

6.
7.
8.
The response of marine Vibrio sp. strain S14 (CCUG 15956) to long-term (48-h) multiple-nutrient starvation (i.e., starvation for glucose, amino acids, ammonium, and phosphate simultaneously) can be described as a three-phase process. The first phase, defined as the stringent control phase, encompasses an accumulation of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and decreases in RNA and protein synthesis during the first 40 min. In the second phase, there is a temporary increase in the rates of RNA and protein synthesis between 1 and 3 h paralleling a decrease in the ppGpp pool. The third phase includes gradual decline in macromolecular synthesis after 3 h. Using two-dimensional gel electrophoresis of pulse-labeled proteins, a total of 66 proteins were identified as starvation inducible (Sti), temporally expressed throughout the three phases of starvation. The inhibition of protein synthesis during the first phase of starvation partly disrupted the subsequent temporally ordered synthesis of starvation proteins and prevented the expression of some late starvation proteins. It was also found that the early temporal class of starvation proteins, which included the majority of the Sti proteins, was the most essential for long-term survival. Vibrio sp. strain S14 cultures prestarved (1 h) for glucose, amino acids, ammonium, or phosphate as well as cultures exposed (1 h) to CdCl2 exhibited enhanced survival during the subsequent multiple-nutrient starvation in the presence of chloramphenicol or rifampin, while heat or the addition of cyclic AMP or nalidixic acid prior to starvation had no effect. It was demonstrated that amino acid starvation and CdCl2 exposure, which induced the stringent response, were the most effective in conferring enhanced survival. A few Sti proteins were common to all starvation conditions. In addition, the total number of proteins induced by multiple-nutrient starvation significantly exceeded the sum of those induced by starvation for each of the individual nutrients.  相似文献   

9.
10.
The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA expression system was used to demonstrate the presence of an internal ribosomal entry sequence (IRES) within the 5'-untranslated region of the cat-1 mRNA. This study shows that IRES-mediated translation of the cat-1 mRNA is regulated by amino acid availability. This IRES causes an increase in translation under conditions of amino acid starvation. In contrast, cap-dependent protein synthesis is inhibited during amino acid starvation, which is well correlated with decreased phosphorylation of the cap-binding protein, eIF4E. These findings reveal a new aspect of mammalian gene expression and regulation that provides a cellular stress response; when the nutrient supply is limited, the activation of IRES-mediated translation of mammalian mRNAs results in the synthesis of proteins essential for cell survival.  相似文献   

11.
E R Mackow  F N Chang 《FEBS letters》1985,182(2):407-412
An electrophoretic system capable of separating 25 S, 23 S, 17.5 S and 16 S ribosomal RNA (rRNA) species was used to study the synthesis and fate of rRNA during amino acid starvation and resupplementation of E. coli relaxed strain KL99. This E. coli relAl strain responded to an amino acid starvation by increasing the rate of synthesis of 25 S and 17.5 S precursor rRNA. When the limiting amino acid was resupplemented, a previously observed 40-fold increase in the cellular guanosine 5'-diphosphate, 3'-diphosphate content [Mol. Gen. Genet. (1983) 192, 5-9] appeared to cause a reduction in new rRNA synthesis. Following amino acid resupplementation, the precursor 25 S and 17.5 S rRNA accumulated during the amino acid starvation were conserved and processed to 23 S and 16 S rRNA species, respectively. This suggests that a modified ribosome assembly scheme involving stable precursor rRNA exists in relAl bacteria during periods of amino acid limitation and resupplementation.  相似文献   

12.
13.
14.
The synthesis of ribosomes by a mutant of Escherichia coli   总被引:3,自引:0,他引:3       下载免费PDF全文
1. When the methionine-requiring mutant 58–161 of Escherichia coli was starved of methionine, ribonucleic acid was made in the absence of protein synthesis. 2. Most of this ribonucleic acid was similar to that found in ribosomes but was contained in particles differing from ribosomes both in sedimentation coefficient and in chromatographic behaviour on diethylaminoethylcellulose. 3. When methionine was added to a starved culture, the ribonucleic acid synthesized during starvation was almost completely undegraded as growth resumed. A transient loss of 5–10% could be largely attributed to breakdown of messenger ribonucleic acid accumulated during starvation. 4. After the addition of methionine, ribosomes were formed from the particles, and during this period preferential synthesis of ribosomal protein took place. 5. It is suggested that under these conditions the direct synthesis of ribosomes from the particles may occur.  相似文献   

15.
Carbon starvation induces the development of a starvation- and stress-resistant cell state in marine Vibrio sp. strain S14 (CCUG 15956). The starved cells remain highly responsive to nutrients during prolonged starvation and exhibit instantaneous severalfold increases in the rates of protein synthesis and RNA synthesis when substrate is added. In order to elucidate the physiological basis for the survival of cells that are starved for a long time, as well as the capacity of these cells for rapid and efficient recovery, we analyzed the ribosome content of carbon-starved Vibrio sp. strain S14 cells. By using direct chemical measurements of the amounts of ribosomal particles in carbon-starved cultures, we demonstrated that ribosomes were lost relatively slowly (half life, 79 h) and that they existed in large excess over the apparent demand for protein synthesis. After 24 h of starvation the total rate of protein synthesis was 2.3% of the rate during growth, and after 3 days this rate was 0.7% of the rate during growth; the relative amounts of ribosomal particles at these times were 81 and 52%, respectively. The ribosome population consisted of 90% 70S monoribosomes, and no polyribosomes were detected in the starved cells. The 70S monoribosomes were responsible for the bulk of the protein synthesis during carbon starvation; some activity was also detected in the polyribosome size region on sucrose density gradients. We suggest that nongrowing carbon-starved Vibrio sp. strain S14 cells possess an excess protein synthesis capacity, which may be essential for their ability to immediately initiate an upshift program when substrate is added.  相似文献   

16.
The amounts of the polypeptide chain elongation factors Tu, Ts, and G, and ribosomal protein SI were assessed under various growth conditions using three independent procedures: (a) Immunoprecipitation and gel electrophoresis, (b) radioimmune assay, and (c) activity measurements. It was demonstrated that, during balanced growth of E. coli, the intracellular levels of these proteins increased in proportion to the growth rate, and the ratio of EF-Tu:EF-Ts:EF-G:protein SI was 4-5:1:1:1, at all growth rates. The effects of isoleucine starvation on the rates of synthesis of these proteins were examined using a pair of isogenic stringent and relaxed strains. The syntheses of all these proteins were found to be under the influence of stringent control. These results indicate that in E. coli the syntheses of the above four proteins are regulated in a coordinated manner and are subject to stringent control.  相似文献   

17.
Vegetatively growing amoebae, if shaken in a starvation (nonnutrient) buffer, acquired aggregation competence, but do not embark on a morphogenetic program. The quantitative variation of ribosomal proteins in vegetative and aggregation-competent cells was compared by labeling the different cell types with [35S]methionine. Vegetative cells were examined at various phases of the growth cycle. No changes could be detected in the content of ribosomes or the apparent stoichiometry of ribosomal proteins in growing cells. In stationary phase cells, the net ribosome content declined to 15% of that observed in logarithmic phase, but the relative amounts of individual ribosomal proteins were not altered. Although aggregation-competent cells contained 30% less ribosomes compared with logarithmic phase cells, the total fraction of newly made ribosomal proteins was the same in both. In contrast to vegetative cells, distinct changes were induced in the ribosomal proteins of aggregation-competent cells. The composition of ribosomes in aggregation-competent phase resembled in every respect that observed in spore cells. As reported earlier, changes were found in all 12 of the developmentally regulated ribosomal proteins. For the majority of newly made ribosomal proteins during aggregation competence, the stoichiometry was similar to that in logarithmically growing cells. However, the relative synthesis of some was particularly higher (13- to 46-fold for A and L; 3- to 8-fold for D, E, S24, L3, S6, and L4) compared with logarithmic phase cells. About 18 proteins, which included the cell-specific ribosomal proteins L18, S10, S14, S16, and L11, were synthesized in lesser amounts than in logarithmic phase cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Because of the highly conserved pattern of expression of the eucaryotic heat shock genes hsp70 and hsp84 or their cognates during sporulation in Saccharomyces cerevisiae and development in higher organisms, the role of the Escherichia coli homologs dnaK and htpG was examined during the response to starvation. The htpG deletion mutant was found to be similar to its wild-type parent in its ability to survive starvation for essential nutrients and to induce proteins specific to starvation conditions. The dnaK103 mutant, however, was highly susceptible to killing by starvation for carbon and, to a lesser extent, for nitrogen and phosphate. Analysis of proteins induced under starvation conditions on two-dimensional gels showed that the dnaK103 mutant was defective for the synthesis of some proteins induced in wild-type cells by carbon starvation and of some proteins induced under all starvation conditions, including the stationary phase in wild-type cells. In addition, unique proteins were synthesized in the dnaK103 mutant in response to starvation. Although the synthesis of some proteins under glucose starvation control was drastically affected by the dnaK103 mutation, the synthesis of proteins specifically induced by nitrogen starvation was essentially unaffected. Similarly, the dnaK103 mutant was able to grow, utilizing glutamine or arginine as a source of nitrogen, at a rate approximate to that of the wild-type parent, but it inefficiently utilized glycerol or maltose as carbon sources. Several differences between the protein synthetic pattern of the dnaK103 mutant and the wild type were observed after phosphate starvation, but these did not result in a decreased ability to survive phosphate starvation, compared with nitrogen starvation.  相似文献   

19.
20.
P H O'Farrell 《Cell》1978,14(3):545-557
Amino acid starvation is shown to decrease the fidelity of translation in E. coli. When proteins are analyzed by two-dimensional gel electrophoresis, missense errors are detected as an unusual heterogeneity in their isoelectric points, while premature termination of protein synthesis can be recognized by a decreased relative rate of synthesis of higher molecular weight proteins and by the the accumulation of a complex group of new small polypeptides. The types of translational errors observed are amino acid-specific. For example, starvation of a rel- strain for histidine produces severe isoelectric point heterogeneity with little evidence of premature termination, while starvation for leucine has little effect on the isoelectric points, but produces a drastic decrease in the average molecular weight of the newly synthesized protein. These differences suggest codon-specific errors in reading the genetic code. In these rel- cells, the effect of amino acid starvation on the rates of synthesis of complete individual proteins is both protein- and amino acid-specific. For example, ribosomal protein L7/12, which lacks histidine, is made at a higher level during histidine starvation than during isoleucine or leucine starvation. This suggests that in rel- cells, the modulation of gene expression caused by the lack of a particular amino acid is, at least in part, a function of the abundance of that amino acid in particular proteins-that is, the response of rel- cells to starvation is consistent with the theory that the inhibition of protein synthesis and the accompanying increase in error frequency both result from low levels of the correct substrate. In marked contrast, virtually no starvation-induced translational errors are detected in a rel+ strain, and the response is not amino acid-specific. Varoius data strongly imply that in this rel+ strain, essentially all the changes caused by starvation are due to the accumulation of ppGpp, which independently reduces protein synthesis, thereby suppressing all the direct effects of amino acid limitation seen in rel- strains (where ppGpp does not accumulate upon starvation). A model is presented which describes how ppGpp might suppress the direct effects of starvation and avoid the loss of translational fidelity. In addition, the direct and specific effects of ppGpp on gene expression are examined independently of amino acid starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号