首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Macrolide antibiotics like erythromycin can induce the synthesis of a specific 23S rRNA methyltransferase which confers resistance to cells containing the erm gene. Erythromycin inhibits both protein synthesis and the formation of 50S subunits in bacterial cells. We have tested the idea that the 50S precursor particle that accumulates in antibiotic-treated Staphylococcus aureus cells is a substrate for the methyltransferase enzyme. Pulse-chase labeling studies were conducted to examine the rates of ribosomal subunit formation in control and erythromycin-induced cells. Erythromycin binding to 50S subunits was examined under the same conditions. The rate of 50S subunit formation was reduced for up to 30 min after antibiotic addition, and erythromycin binding was substantial at this time. A nuclease protection assay was used to examine the methylation of adenine 2085 in 23S rRNA after induction. A methyl-labeled protected RNA sequence was found to appear in cells 30 min after induction. This protected sequence was found in both 50S subunits and in a subunit precursor particle sedimenting at about 30S in sucrose gradients. 23S rRNA isolated from 50S subunits of cells could be labeled by a ribosome-associated methlytransferase activity, with 3H-S-adenosylmethionine as a substrate. 50S subunits were not a substrate for the enzyme, but the 30S gradient region from erythromycin-treated cells contained a substrate for this activity. These findings are consistent with a model that suggests that antibiotic inhibition of 50S formation leads to the accumulation of a precursor whose 23S rRNA becomes methylated by the induced enzyme. The methylated rRNA will preclude erythromycin binding; thus, assembly of the particle and translation become insensitive to the inhibitory effects of the drug. Received: 21 June 2002 / Accepted: 21 August 2002  相似文献   

2.
Erythromycin is a macrolide antibiotic that inhibits not only mRNA translation but also 50S ribosomal subunit assembly in bacterial cells. An important mechanism of erythromycin resistance is the methylation of 23S rRNA by erm methyl transferase enzymes. A model for 50S ribosomal subunit formation suggests that the precursor particle which accumulates in erythromycin treated cells is the target for methyl transferase activity. Hybridization experiments identified the presence of 23S rRNA in the 50S precursor particle. The protein content of the 50S precursor particle was analyzed by MALDI-TOF mass spectrophotometry. These studies have identified 23 of 36 50S ribosomal proteins in the precursor. Methyltransferase assays demonstrated that the 50S precursor particle was a substrate for ermE methyltransferase. Competition experiments indicated that the enzyme could displace erythromycin from the 50S precursor particle and that the methyltransferase had a higher association constant for the precursor particle compared to that of erythromycin. Inhibition experiments showed that macrolide, lincosamide and streptogramin B compounds bound to the precursor particle with similar affinity and inhibited the ermE methyltransferase activity. These studies shed light on the interaction of ermE methyltransferase and erythromycin in this clinically important pathogen.  相似文献   

3.
The effects of erythromycin on the formation of ribosomal subunits were examined in wild-type Escherichia coli cells and in an RNase E mutant strain. Pulse-chase labelling kinetics revealed a reduced rate of 50S subunit formation in both strains compared with 30S synthesis, which was unaffected by the antibiotic. Growth of cells in the presence of [14C]-erythromycin showed drug binding to 50S particles and to a 50S subunit precursor sedimenting at about 30S in sucrose gradients. Antibiotic binding to the precursor correlated with the decline in 50S formation in both strains. Erythromycin binding to the precursor showed the same 1:1 stoichiometry as binding to the 50S particle. Gel electrophoresis of rRNA from antibiotic-treated organisms revealed the presence of both 23S and 5S rRNAs in the 30S region of sucrose gradients. Hybridization with a 23S rRNA-specific probe confirmed the presence of this species of rRNA in the precursor. Eighteen 50S ribosomal proteins were associated with the precursor particle. A model is presented to account for erythromycin inhibition of 50S formation.  相似文献   

4.
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.  相似文献   

5.
Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+2 dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+2 (translationally inactive) and high Mg+2 (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.  相似文献   

6.
When cells of S. typhimurium were heated at 48 C for 30 min in phosphate buffer (pH 6.0), they became sensitive to Levine Eosin Methylene Blue Agar containing 2% NaCl (EMB-NaCl). The inoculation of injured cells into fresh growth medium supported the return of their normal tolerance to EMB-NaCl within 6 hr. The fractionation of ribosomal ribonucleic acid (rRNA) from unheated and heat-injured cells by polyacrylamide gel electrophoresis demonstrated that after injury the 16S RNA species was totally degraded and the 23S RNA was partially degraded. Sucrose gradient analysis demonstrated that after injury the 30S ribosomal subunit was totally destroyed and the sedimentation coefficient of the 50S particle was decreased to 47S. During the recovery of cells from thermal injury, four species of rRNA accumulated which were demonstrated to have the following sedimentation coefficients: 16, 17, 23, and 24S. Under identical recovery conditions, 22, 26, and 28S precursors of the 30S ribosomal subunit and 31 and 48S precursors of the 50S ribosomal subunit accumulated along with both the 30 and 50S mature particles. The addition of chloramphenicol to the recovery medium inhibited both the maturation of 17S RNA and the production of mature 30S ribosomal subunits, but permitted the accumulation of a single 22S precursor particle. Chloramphenicol did not affect either the maturation of 24S RNA or the mechanism of formation of 50S ribosomal subunits during recovery. Very little old ribosomal protein was associated with the new rRNA synthesized during recovery. New ribosomal proteins were synthesized during recovery and they were found associated with the new rRNA in ribosomal particles. The rate-limiting step in the recovery of S. typhimurium from thermal injury was in the maturation of the newly synthesized rRNA.  相似文献   

7.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

8.
The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2'-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2'-O position of the ribose.  相似文献   

9.
10.
Bacteria tune the function of their ribosomes by methylating specific rRNA nucleotides. Nucleotide G745 in Escherichia coli 23S rRNA is methylated by the methyltransferase enzyme RrmA, whereas in Streptomyces fradiae, the neighbouring nucleotide G748 is methylated by the enzyme TlrB. Both nucleotides line the peptide exit channel of the ribosome at the binding site of macrolide, lincosamide and streptogramin B antibiotics. Resistance to the macrolide tylosin, which is produced by S. fradiae, is conferred by methylation of G748. RrmA and TlrB are homologues (29% identical), and a database search against all presently available sequences revealed a further two dozen homologues from a wide variety of Bacteria. No homologues were found among the Archaea or Eukarya. The bacterial sequences adhere to the species phylogeny and segregate into two groups, in which the Gram-negative sequences align with RrmA and the Gram-positives with TlrB. Consistently, in more than 20 species tested, the distribution of methylation in the Gram-negative rRNAs (methylated at G745) and the Gram-positives (methylated at G748) perfectly matches the bacterial phylogeny. Cloning and expression of representative methyltransferase genes showed that this specificity of methylation is determined solely by the methyltransferase enzyme and is independent of the origin of the rRNA substrate. This is the first case in which the position of an RNA methylation defines a sharp division between the Gram-negative and Gram-positive bacteria. Given the specificities and distribution of these methyltransferases, we propose a change in the nomenclature of RrmA to RlmAI (rRNA large subunit methyltransferase) and of TlrB to RlmAII.  相似文献   

11.
We have used oligodeoxyribonucleotide probes to investigate possible interactions between chloramphenicol and portions of the rRNA contained within the peptidyltransferase center of the Escherichia coli ribosome. Oligodeoxyribonucleotide probes complementary to bases 2448-2454, 2468-2482, and 2497-2505 of 23 S rRNA were hybridized to 50 S subunits in situ. Probe binding was qualitatively assessed by sucrose gradient centrifugation. Each probe was shown to bind specifically with its intended binding site through digestion of the rRNA within the RNA/DNA hetero-duplexes with RNase H and analysis of the digestion fragments using gel electrophoresis. Competitive binding experiments were conducted between each probe and the antibiotics chloramphenicol and erythromycin. The binding of a probe complementary to bases 2497-2505 was attenuated by 70% upon the binding of chloramphenicol. A probe complementary to bases 2468-2482 showed an increase in binding of 14% while binding of a probe complementary to bases 2448-2454 was not affected by chloramphenicol binding. Erythromycin did not affect the binding of any of these probes to 50 S subunits. These results suggest that bases within the 2497-2505 region of 23 S rRNA in E. coli may be involved in a chloramphenicol/rRNA interaction.  相似文献   

12.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

13.
Methylation of the N1 position of nucleotide G745 in hairpin 35 of Escherichia coli 23 S ribosomal RNA (rRNA) is mediated by the methyltransferase enzyme RrmA. Lack of G745 methylation results in reduced rates of protein synthesis and growth. Addition of recombinant plasmid-encoded rrmA to an rrmA-deficient strain remedies these defects. Recombinant RrmA was purified and shown to retain its activity and specificity for 23 S rRNA in vitro. The recombinant enzyme was used to define the structures in the rRNA that are necessary for the methyltransferase reaction. Progressive truncation of the rRNA substrate shows that structures in stem-loops 33, 34 and 35 are required for methylation by RrmA. Multiple contacts between nucleotides in these stem-loops and RrmA were confirmed in footprinting experiments. No other RrmA contact was evident elsewhere in the rRNA. The RrmA contact sites on the rRNA are inaccessible in ribosomal particles and, consistent with this, 50 S subunits or 70 S ribosomes are not substrates for RrmA methylation. RrmA resembles the homologous methyltransferase TlrB (specific for nucleotide G748) as well as the Erm methyltransferases (nucleotide A2058), in that all these enzymes methylate their target nucleotides only in the free RNA. After assembly of the 50 S subunit, nucleotides G745, G748 and A2058 come to lie in close proximity lining the peptide exit channel at the site where macrolide, lincosamide and streptogramin B antibiotics bind.  相似文献   

14.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

15.
16.
Ribosomal RNAs undergo several nucleotide modifications including methylation. We identify FtsJ, the first encoded protein of the ftsJ-hflB heat shock operon, as an Escherichia coli methyltransferase of the 23 S rRNA. The methylation reaction requires S-adenosylmethionine as donor of methyl groups, purified FtsJ or a S(150) supernatant from an FtsJ-producing strain, and ribosomes from an FtsJ-deficient strain. In vitro, FtsJ does not efficiently methylate ribosomes purified from a strain producing FtsJ, suggesting that these ribosomes are already methylated in vivo by FtsJ. FtsJ is active on ribosomes and on the 50 S ribosomal subunit, but is inactive on free rRNA, suggesting that its natural substrate is ribosomes or a pre-ribosomal ribonucleoprotein particle. We identified the methylated nucleotide as 2'-O-methyluridine 2552, by reverse phase high performance liquid chromatography analysis, boronate affinity chromatography, and hybridization-protection experiments. In view of its newly established function, FtsJ is renamed RrmJ and its encoding gene, rrmJ.  相似文献   

17.
Escherichia coli strain 15--28 is a mutant that accumulates ribonucleoprotein ('47 S') particles during exponential growth. These particles contain mature 23 S rRNA, but lack three of the proteins of the larger ribosomal subunit, to which they are a precursor. In organisms growing at 20 degrees C, assembly of 47 S particles involves three intermediates that contain precursor 23 S rRNA, one of which has the same sedimentation properties as 47 S particles. Assembly of 50 S ribosomal subunits in the parent strain is 'normal'. There are three intermediates; each contains precursor 23 S rRNA, and one cannot be distinguished from completed subunits by sedimentation. Synthesis of 30 S ribosomal subunits in parent and mutant strains is qualitatively similar, but quantitatively different. When growth is at 37 degrees C, assembly in the mutant alters. There are now two sequential precursors to 47 S particles. Both contain precursor 23 S rRNA; one has the same sedimentation coefficient as 47 S particles. In some respects, synthesis in the mutant proceeds as though 47 S particles, rather than 50 S ribosomal subunits, are the end-product of assembly.  相似文献   

18.
Desai PM  Culver GM  Rife JP 《Biochemistry》2011,50(5):854-863
KsgA is an rRNA methyltransferase important to the process of small subunit biogenesis in bacteria. It is ubiquitously found in all life including archaea and eukarya, where the enzyme is referred to as Dim1. Despite the emergence of considerable data addressing KsgA function over the last several years, details pertaining to RNA recognition are limited, in part because the most accessible substrate for in vitro studies of KsgA is the 900000 Da 30S ribosomal subunit. To overcome challenges imposed by size and complexity, we adapted recently reported techniques to construct in vivo assembled mutant 30S subunits suitable for use in in vitro methyltransferase assays. Using this approach, numerous 16S rRNA mutants were constructed and tested. Our observations indicate that the 790 loop of helix 24 plays an important role in overall catalysis by KsgA. Moreover, the length of helix 45 also is important to catalysis. In both cases loss of catalytic function occurred without an increase in the production of N(6)-methyladenosine, a likely indication that there was no critical reduction in binding strength. Both sets of observations support a "proximity" mechanism of KsgA function. We also report that several of the mutants constructed failed to assemble properly into 30S subunits, while some others did so with reduced efficiency. Therefore, the same technique of generating mutant 30S subunits can be used to study ribosome biogenesis on the whole.  相似文献   

19.
B Vester  R A Garrett 《Biochimie》1987,69(8):891-900
Primer-directed mutagenesis was employed to introduce an A2058----G transition in plasmid-encoded Escherichia coli 23S RNA at a site that has been implicated, indirectly, in erythromycin binding. The mutation raises the growth tolerance of cells from 30 to 300 micrograms/ml of erythromycin, and cells grown in the presence of erythromycin contain ribosomes with high levels of mutated 23S RNA. In these cells, wild type 50S subunits 'fall off' the message and are selectively degraded, possibly as a result of an erythromycin-induced conformational change. A fast in vitro poly(U) assay revealed minimal effects of erythromycin on elongation beyond tetrapeptides. We correlated these results with the literature data and concluded that erythromycin acts immediately post-initiation and directly, or indirectly, destabilizes mRNA-bound 70S ribosomes, and prevents their recycling by causing 50S subunit degradation.  相似文献   

20.
The accessibility of the 3'-ends of E. coli in various states has been probed by reaction, after periodate oxidation, with the fluorescent dye proflavine semicarbazide. Free oxidized 16S and 23S rRNAs each react with 2 equivalents of dye. The 23S rRNA is equally reactive in the 50S subunit and the 70S ribosome. The 16S RRNA 3'-end is accessible in the 30S subunit. In the intact 70S particle, periodate can reach the 3'-end of the 16S rRNA but the dye cannot. The 5S rRNA is relatively inaccessible to periodate oxidation or dye reaction in the 70S particle. Dye-labelled 16S rRNA will reconstitute into 30S particles but they are inactive in polypeptide synthesis. This is apparently due to the inability of the 30S particles to form tight complexes with 50S subunits. Iodide quenching studies indicate that the environment of the 3'-end of 16S rRNA in the 30S particle is different from that of the free rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号