首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a method for predicting the structure of small RNA loops that can be used to augment already existing RNA modeling techniques. The method requires no input constraints on loop configuration other than end-to-end distance. Initial loop structures are generated by randomizing the torsion angles, beginning at one end of the polynucleotide chain and correlating each successive angle with the previous. The bond lengths of these structures are then scaled to fit within the known end constraints and the equilibrium bond lengths of the potential energy function are scaled accordingly. Through a series of rescaling and minimization steps the structures are allowed to relax to lower energy configurations with standard bond lengths and reduced van der Waals clashes. This algorithm has been tested on the variable loops of yeast tRNA-Asp and yeast tRNA-Phe, as well as the sarcin-ricin tetraloop and the anticodon loop of yeast tRNA-Phe. The results indicate good correlation between potential energy and the loop structure predictions that are closest to the variable loop crystal structures, but poorer correlation for the more isolated stem loops. The number of stacking interactions has proven to be a good objective measure of the best loop predictions. Selecting on the basis of energy and stacking, we obtain two structures with 0.65 and 0.75 Å all-atom rms deviations (RMSD) from the crystal structure for the tRNA-Asp variable loop. The best structure prediction for the tRNA-Phe variable loop has an all-atom RMSD of 2.2 Å and a backbone RMSD of 1.6 Å, with a single base responsible for most of the deviation. For the sarcin-ricin loop from 28S ribosomal RNA, the predicted structure's all-atom RMSD from the nmr structure is 1.0 Å. We obtain a 1.8 Å RMSD structure for the tRNA-Phe anticodon loop. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Resonances of the water exchangeable iminoprotons of the tertiary structure of yeast tRNAPhe were studied by experiments involving Nuclear Overhauser Effects (NOE's). Direct NOE evidence is presented for the assignment of all resonances of iminoprotons participating in tertiary basepairing (except that of G19C56 which was assigned by an elimination procedure). The present results in conjunction with our previous assignment of secondary iminoprotons constitute for the first time a complete spectral assignment of all iminoprotons participating in basepairing in yeast tRNAPhe. In addition we have been able to assign the non(internally) hydrogen bonded N1 proton of psi 55 as well as the N3 proton of this residue, which is one of the two iminoprotons hydrogen bonded to a phosphate group according to X-ray results. No evidence could be obtained for the existence in solution of the other iminoproton-phosphate interaction: that between U33 N3H and P36 located in the anticodon loop. Remarkable is the assignment of a resonance at 12.4 - 12.5 ppm to the iminoproton of the tertiary basepair T54m1A58. The resonance positions obtained for the iminoprotons of G18 (9.8 ppm) and m2(2)G26 (10.4 ppm) are surprisingly far upfield considering that these protons are involved in hydrogen bonds according to X-ray diffraction results. As far as reported by changes in chemical shifts of iminoproton resonances the main structural event induced by Mg++ ions takes place near the tertiary interactions U8A14 and G22m7G46.  相似文献   

3.
Resonances of the water exchangeable iminoprotons of the T and anticodon stem of yeast tRNAPhe were assigned by means of Nuclear Overhauser Effects (NOE's). Together with our previous assignments of iminoproton resonances from the acceptor and D stem (A. Heerschap, C.A.G. Haasnoot and C.W. Hilbers (1982) Nucleic Acids Res. 10, 6981-7000) the present results constitute a complete assignment of all resonances of iminoprotons involved in the secondary structure of yeast tRNAPhe with a reliability and spectral resolution not reached heretofore. Separate identification of the methylprotons in m5C40 and m5C49 was also possible due to specific NOE patterns in the lowfield part of the spectrum. Our experiments indicate that in solution the psi 39 residue in the anticodon stem is orientated in a syn conformation in contrast to the normally observed anti orientation of the uracil base in AU basepairs. Evidence is presented that in solution the acceptor stem is stacked upon the T stem. Furthermore, it turns out that in a similar way the anticodon stem forms a continuous stack with the D stem, but here the m2(2)G26 residue is located between the latter two stems (as is found in the X-ray crystal structure). The stacking of these stems is not strictly dependent on the presence of magnesium ions. NOE experiments show that these structural features are preserved when proceeding from a buffer with magnesium ions to a buffer without magnesium ions although differences in chemical shifts and NOE intensities indicate changes in the conformation of the tRNA.  相似文献   

4.
K Yoon  D H Turner  I Tinoco  Jr  F Haar    F Cramer 《Nucleic acids research》1976,3(9):2233-2241
The kinetics of U-U-C-A binding to the dodecanucleotide (A-Cm-U-Gm-A-A-Y-A-psi-m5C-U-Gp) isolated from the anticodon region of yeast tRNA-Phe are similar to the kinetics of binding of U-U-C-A to intact tRNA-Phe. A large enhancement in binding constant over that predicted for U-U-C-A-U-G-A-A is observed for both the complexes of dodecanucleotide and tRNA-Phe with U-U-C-A. This strongly suggests that both the anticodon loop in tRNA-Phe and the dodecanucleotide can form four base pairs with U-U-C-A. Furthermore, the enhanced stability cannot be attributed to a special conformation of the anticodon loop, but instead the anticodon loop is probably flexible. A likely explanation for the increased binding is the effect of non-base-paired ends. This increased thermodynamic stability comes from a larger entropy gain rather than a larger enthalpy decrease.  相似文献   

5.
The low-field hydrogen-bond ring NH proton nuclear magnetic resonance (NMR) spectra of several transfer ribonucleic acids (tRNAs) related to yeast tRNAPhe have been examined in detail. Several resonances are sensitive to magnesium ion and temperature, suggesting that they are derived from tertiary base pairs. These same resonances cannot be attributed to cloverleaf base pairs as shown by experimental assignment and ring current shift calculation of the secondary base pair resonances. The crystal structure of yeast tRNAPhe reveals at least six tertiary base pairs involving ring NH hydrogen bonds, which we conclude are responsible for the extra resonances observed in the low-field NMR spectrum. In several tRNAs with the same tertiary folding potential and dihydrouridine helix sequence as yeast tRNAPhe, the extra resonances from tertiary base pairs are observed at the same position in the spectrum.  相似文献   

6.
7.
Eight class I tRNA species have been purified to homogeneity and their proton nuclear magnetic resonance (NMR) spectra in the low-field region (-11 to -15 ppm) have been studied at 360 MHz. The low-field spectra contain only one low-field resonance from each base pair (the ring NH hydrogen bond) and hence directly monitor the number of long-lived secondary and tertiary base pairs in solution. The tRNA species were chosen on the basis of their sequence homology with yeast phenylalanine tRNA in the regions which form tertiary base pairs in the crystal structure of this tRNA. All of the spectra show 26 or 27 low-field resonances approximately 7 of which are derived from tertiary base pairs. These results are contrary to previous claims that the NMR spectra indicate the presence of resonances from secondary base pairs only, as well as more recent claims of only 1-3 tertiary resonances, but are in good agreement with the number of tertiary base pairs expected in solution based on the crystal structure. The tertiary base pair resonances are stable up to at least 46 degrees C. Removal of magnesium ions causes structural changes in the tRNA but does not result in the loss of any secondary or tertiary base pairs.  相似文献   

8.
Yeast tRNA-Phe has been cross-linked photochemically to three aminoacyl-tRNA synthetases, yeast phenylalanyl-tRNA synthetase, Escherichia coli isoleucyl-tRNA synthetase, and E. coli valyl-tRNA synthetase. The two non-cognate enzymes are known to interact with tRNA-Phe. In each complex, three regions on the tRNA are found to cross-link. Two of these are common to all of the complexes, while the third is unique to each. Thus, the cognate and non-cognate complexes bear considerable similarity to each other in the way in which the respective enzyme orients on tRNA-Phe, a result which was also established for the complexes of E. coli tRNA-Ile (BUDZIK, G.P., LAM, S.M., SCHOEMAKER, H.J.P., and SCHIMMEL, P.R. (1975) J. Biol. Chem. 250, 4433-4439). The common regions include a piece extending from the 5'-side of the acceptor stem to the beginning of the dihydrouridine helix, and a segment running from the 3' side of the extra loop into the TpsiC helix. These two regions overlap with and include some of the homologous bases found in eight tRNAs aminoacylated by yeast phenylalanyl-tRNA synthetase (ROE, B., SIROVER, M., and DUDOCK, B. (1973) Biochemistry 12, 4146-4153). Although well separated in the primary and secondary structure, these two segments are in close proximity in the crystallographic tertiary structure. In two of the complexes, the third cross-linked fragment is near to the two common ones. The picture which emerges is that the enzymes all interact with the general area in which the two helical branches of the L-shaped tertiary structure fuse together, with additional interactions on other parts of the tRNAas well.  相似文献   

9.
L Droogmans  H Grosjean 《Biochimie》1991,73(7-8):1021-1025
Four variants of yeast tRNA-Phe in which the anticodon and 3'-adjacent nucleotide (GmAAY) have been replaced by synthetic tetranucleotides NAAG (where N is each of the four canonical nucleosides G, C, U or A) are substrates for a yeast tRNA modification enzyme which catalyses the S-adenosyl-L-methionine dependent formations of Gm-34, Cm-34, Um-34, Am-34 and Im-34 (where Nm represents a 2'-O-methylnucleoside and I inosine). The kinetics of these nucleosides-34 2'-O-methylations reveal that yeast tRNA-Phe with G-34 (the natural substrate) is less efficiently modified than variants of the same tRNA containing U-34 and C-34. The formation of Am-34 in the tRNA containing A-34 was found to be particularly inefficient. However, in this tRNA, we observed the formation of I-34 followed by a 2'-O-methylation (giving rise to Im-34). In the yeast in vitro system described here, inosine formation is not dependent on the addition of any cofactor including hypoxanthine; the mechanism of inosine formation in yeast tRNA might therefore be distinct from that found in higher eukaryotes.  相似文献   

10.
BackgroundIn protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules.MethodsWe designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal.ResultsYeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures.ConclusionsLoop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution.General significanceNo single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.  相似文献   

11.
Modified nucleosides are prevalent in tRNA. Experimental studies reveal that modifications play an important role in tuning tRNA activity. In this study, molecular dynamics (MD) simulations were used to investigate how modifications alter tRNA structure and dynamics. The X-ray crystal structures of tRNA-Asp, tRNA-Phe, and tRNA-iMet, both with and without modifications, were used as initial structures for 333-ns time-scale MD trajectories with AMBER. For each tRNA molecule, three independent trajectory calculations were performed. Force field parameters were built using the RESP procedure of Cieplak et al. for 17 nonstandard tRNA residues. The global root-mean-square deviations (RMSDs) of atomic positions show that modifications only introduce significant rigidity to tRNA-Phe’s global structure. Interestingly, regional RMSDs of anticodon stem-loop suggest that modified tRNA has more rigid structure compared to the unmodified tRNA in this domain. The anticodon RMSDs of the modified tRNAs, however, are higher than those of corresponding unmodified tRNAs. These findings suggest that rigidity of the anticodon arm is essential for tRNA translocation in the ribosome complex, and, on the other hand, flexibility of anticodon might be critical for anticodon–codon recognition. We also measure the angle between the 3D L-shaped arms of tRNA; backbone atoms of acceptor stem and TψC stem loop are selected to indicate one vector, and backbone atoms of anticodon stem and D stem loop are selected to indicate the other vector. By measuring the angle between two vectors, we find that the initiator tRNA has a narrower range of hinge motion compared to tRNA-Asp and tRNA-Phe, which are elongator tRNA. This suggests that elongator tRNAs, which might require significant flexibility in this hinge to transition from the A–to-P site in the ribosome, have evolved to specifically accommodate this need.  相似文献   

12.
13.
We have calculated chemical shifts for a range of diastereotopic protons in proteins (i.e. methylene protons, and the methyl groups of valine and leucine residues), using a recently optimised method for chemical shift calculation. The calculations are based on crystal structure coordinates, and have been compared with experimental stereospecific assignments. The results indicate that chemical shifts can be used to suggest stereospecific assignments with about 80% probability of being correct, in cases where both the experimental and the calculated chemical shift differences between a pair of diastereotopic protons are greater than 0.3 ppm. Inaccurate calculations are shown to be caused in most cases by differences between crystal and solution structures. Furthermore, chemical shift calculations based on NMR structures are shown to be capable of acting as a further constraint on structure, by limiting the range of side-chain conformations adopted in structures calculated from NMR data.  相似文献   

14.
Earlier studies have shown that native phenylalanyl-tRNA synthetase from baker's yeast contains two different kinds of subunits, alpha of molecular weight 73000 and beta of molecular weight 63000. The enzyme is an asymmetric tetramer alpha-2beta-2, which binds two moles of each ligand per mole. Incubation of the purified enzyme with trypsin results in an irreversible conversion: the alpha-subunit remains apparently unchanged but beta is rapidly degraded and yields a lighter species beta of molecular weight 41000. The trypsin-modified enzyme is an alpha-2beta-2 molecule which can still activate phenylalanine but cannot transfer it to tRNA-Phe; furthermore it does not bind tRNA-Phe but its kinetic parameters are identical to those of the native enzyme with respect to ATP and phenylalanine. Therefore the two beta subunits play a critical part in tRNA binding. Isolated alpha or beta subunits exhibit no significant activity and both types of subunit seem to be required for phenylalanine activation.  相似文献   

15.
The crystal structure of the RNA octamer, 5'-GGCGUGCC-3' has been determined from x-ray diffraction data to 1.5 angstroms resolution. In the crystal, this oligonucleotide forms five self-complementary double-helices in the asymmetric unit. Tandem 5'GU/3'UG basepairs comprise an internal loop in the middle of each duplex. The NMR structure of this octameric RNA sequence is also known, allowing comparison of the variation among the five crystallographic duplexes and the solution structure. The G.U pairs in the five duplexes of the crystal form two direct hydrogen bonds and are stabilized by water molecules that bridge between the base of guanine (N2) and the sugar (O2') of uracil. This contrasts with the NMR structure in which only one direct hydrogen bond is observed for the G.U pairs. The reduced stability of the r(CGUG)2 motif relative to the r(GGUC)2 motif may be explained by the lack of stacking of the uracil bases between the Watson-Crick and G.U pairs as observed in the crystal structure.  相似文献   

16.
Domain 5 (D5) is absolutely required for all catalytic functions of group II introns. Here we describe the solution NMR structure, electrostatic calculations, and detailed magnesium ion-binding surface of D5 RNA from the Pylaiella littoralis large ribosomal RNA intron (D5-PL). The overall structure consists of a hairpin capped by a GNRA tetraloop. The stem is divided into lower and upper helices of 8 and 5 bp, respectively, separated by an internal bulge. The D5-PL internal bulge nucleotides stack into the helical junction, resulting in a coupling between the bulge A25 and the closing base pair (G8-C27) of the lower helix. Comparison of the D5-PL structure to previously reported related structures indicates that our structure is most similar, in the helical regions, to the crystal structure of D5 from yeast Ai5gamma (D5-Ai5gamma) and the NMR structure of the U6 snRNA stem-loop region. Our structure differs in many respects from both the NMR and X-ray structures of D5-Ai5gamma in the bulge region. Electrostatic calculations and NMR chemical shift perturbation analyses reveal magnesium ion-binding sites in the tetraloop, internal bulge, and the AGC triad in the lower stem. Our results suggest that the structure, electrostatic environment, and the magnesium ion-binding sites within the tetraloop, bulge, and triad regions are conserved features of the splicing machinery of both the group II introns and the spliceosome that are likely key for catalytic function.  相似文献   

17.
18.
The crystal structure of a soluble form of Borrelia burgdorferi outer surface protein A (OspA) complexed with the Fab fragment of a monoclonal antibody has revealed an unusual structure that has a repetitive antiparallel beta topology with a nonglobular, single layer beta-sheet connecting the globular N- and C-terminal domains. Earlier NMR studies have shown that the local structure of OspA including the single layer beta-sheet is similar to the crystal structure. Here we report a small angle X-ray scattering (SAXS) study of the global conformation of OspA in solution. The radius of gyration (Rg) and the length distribution function (P(r)) of OspA measured by SAXS in solution are nearly identical to the calculated ones from the crystal structure, respectively. The NMR and SAXS experiments complement each other to show that OspA including the central single-layer beta-sheet is a stable structure in solution, and that the OspA crystal structure represents the predominant solution conformation of the protein.  相似文献   

19.
Bulged nucleotides play a variety of important roles in RNA structure and function, frequently forming tertiary interactions and sometimes even participating in RNA catalysis. In pre-mRNA splicing, the U2 snRNA base pairs with the intron branchpoint sequence (BPS) to form a short RNA duplex that contains a bulged adenosine that ultimately serves as the nucleophile that attacks the 5' splice site. We have determined a 2.18-A resolution crystal structure of a self-complementary RNA designed to mimic the highly conserved yeast (Saccharomyces cerevisiae) branchpoint sequence (5'-UACUAACGUAGUA with the BPS italicized and the branchsite adenosine underlined) base paired with its complementary sequence from U2 snRNA. The structure shows a nearly ideal A-form helix from which two unpaired adenosines flip out. Although the adenosine adjacent to the branchsite adenosine is the one bulged out in the structure described here, either of these adenosines can serve as the nucleophile in mammalian but not in yeast pre-mRNA splicing. In addition, the packing of the bulged RNA helices within the crystal reveals a novel RNA tertiary interaction in which three RNA helices interact through bulged adenosines in the absence of any divalent metal ions.  相似文献   

20.
J M Flanagan  K B Jacobson 《Biochemistry》1988,27(15):5778-5785
The structure of tRNA in solution was explored by NMR spectroscopy to evaluate the effect of divalent cations, especially zinc, which has a profound effect on the chromatographic behaviour of tRNAs in certain systems. The divalent ions Mg2+ and Zn2+ have specific effects on the imino proton region of the 1H NMR spectrum of valine transfer RNA (tRNA(Val] of Escherichia coli and of phenylalanine transfer RNA (tRNA(Phe] of yeast. The dependence of the imino proton spectra of the two tRNAs was examined as a function of Zn2+ concentration. In both tRNAs the tertiary base pair (G-15).(C-48) was markedly affected by Zn2+ (shifted downfield possibly by as much as 0.4 ppm); this is the terminal base pair in the augmented dihydrouridine helix (D-helix). Base pair (U-8).(A-14) in yeast tRNA(Phe) or (s4U-8).(A-14) in tRNA1(Val), which are stacked on (G-15).(C-48), was not affected by Zn2+, except when 1-2 Mg2+ ions per tRNA were also present. Another imino proton that may be affected by Zn2+ in both tRNAs is that of the tertiary base pair (G-19).(C-46). The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.3 ppm. This base pair helps to anchor the D-loop to the T psi C loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号